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Abstract

Finite group theorists have been interested in counting groups of prime-power order,

as a preliminary step to counting groups of any finite order and to assist in explicitly

listing such groups. In 1960, G. Higman conjectured [21] that the number of groups

of prime-power order pn, for fixed n and varying p, is a function of a particular form,

called polynomial on residue classes (PORC). In this paper he proved that a certain

class of groups of prime-power order satisfy this conjecture but did not furnish explicit

results.

The aim of this thesis is to reinterpret Higman’s proof to create and implement an

algorithm to find explicit results in this known case. The first chapter of the thesis

will outline some of the history behind the problem and introduce it in the context

suggested by Higman. The subsequent chapters will describe the algorithm to solve

this case. Each chapter will cover a major part of the algorithm and will describe the

relevant theory and the algorithms involved.

We will describe some of the details regarding implementation, and list results

obtained by this implementation.
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Notation and terminology

Notation

In this section we will outline notation that is used throughout this thesis, both in

general and chapter-by-chapter. It will be in the form notation, concept, page reference

(where applicable).

Universal notation

The following notation follows the usual standards in mathematics and is universal

throughout this thesis. As such we do not provide page numbers or references.

Z, Ring of integers

Q, Field of rational numbers

C, Field of complex numbers

K∗, The multiplicative group of a field K

K, The algebraic closure of a field K

Fp, Finite field of order p, with p prime

Fq, Finite field of order q, where q = pd

GL(n;K), n-by-n invertible matrices over the field K

GL(n1, . . . , nr ; K), Direct sum of GL(ni ;K)

|λ|, Sum of the parts of the partition λ
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Guide to pseudocode

For the important algorithms of this thesis, pseudocode for each will be provided.

The actual code used in implementing this algorithm will not be included as it is

approximately 120 pages in length. The algorithm was implemented in GAP 4.4.7, and

the pseudocode will be presented in a similar fashion.

Functions are typeset as Function(n). These are usually equivalent to those found

in GAP (both in name and usage). The following is a list of the functions required in

this thesis:

• ClassTwo(p, d, s : parameters) : The number of d-generator p-groups of p-class

two of order pd+s. The variable “parameters” specifies certain options. For our

purposes, we will always consider it to be set to Exponent := true. The associ-

ated algorithm can be found in [15] and has only been implemented in MAGMA

[7].

• Combinations(S, n) : returns all subsets of S of length n;
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• DivisorsInt(n) : returns the divisors of the integer n;

• Partitions(n) : returns the list of all unordered, unrestricted integer partitions

of n;

• UnorderedTuples(S, n) : returns all unordered n-tuples of elements from a set

S, with repetition allowed.

We make no assumptions about the practical efficiencies of these functions other

than that they are “reasonable” implementations. Faster algorithms may exist for

specialized uses for these functions.



Chapter 1

History

When studying finite groups, it would be desirable to be able to determine all groups

of a given order. By “determine” we can mean several different things: if we find an

explicit description for every group of that order, we shall call that listing the groups.

If we already have such a list and just want the number of entries, we call that counting

groups of a given order. Finally, if we want an implicit count of the groups of a given

order without using a list of such groups we call this enumerating the groups. We allow

enumeration to cover more general situations where the count is functional; that is,

an enumeration of groups of order n may be given as a function depending on n. We

will endeavour to maintain this distinction between listing, counting and enumerating

throughout this thesis. Note that this distinction is not always maintained in the

literature.

It would be desirable to be able to have a listing or an enumeration of groups of

arbitrary order, although both tasks are exceedingly difficult. One would expect that

restricting the types of groups listed or enumerated would simplify this task. We will

restrict our attention to groups of prime-power order, hereafter known as p-groups.

We will be most interested in the problem of enumerating p-groups and thus will

not examine the history of listing groups, p-groups or otherwise. A detailed history

on the determination of finite groups can be found in [43]. Nevertheless, we will refer

to some results involved in the listing of p-groups as they motivate the enumeration

1



1.1. ENUMERATION OF p-GROUPS 2

problem.

1.1 Enumeration of p-groups

Enumerating p-groups of a given order seems easier than listing them as in the latter

situation we require an irredundant and complete list of explicit presentations of all

isomorphism types of groups of that order. Nevertheless, the enumeration of p-groups is

a difficult problem by itself. Most of the initial work in enumerating p-groups involved

taking the list of p-groups of that order and counting the groups. If the lists were

parametrised by the prime p, then from the results proving the correctness of these

lists we could obtain as a corollary a counting function, which can be viewed as a form

of enumeration. We will be more interested in the approaches where the result genuinely

does not require a list of the groups of a given size, parametrised or not. Even then,

enumeration can take two routes: asymptotic enumeration and exact enumeration.

Let f(n, p) denote the number of isomorphism types of groups of order pn. Asymp-

totic enumeration asks for the asymptotic behaviour of the function f(n, p). The first

asymptotic results for p-groups were found by G. Higman in 1960 [20]. Higman showed

that

f(n, p) = pAn3
,

where A depends on p and n, and 2
27 − εn ≤ A ≤ 2

15 + εn, where εn depends only on n

and tends to zero as n tends to infinity. C. C. Sims improved this result [47], showing

that A = 2
27 + O(n−1/3). This result was later extended to arbitrary finite groups by

various authors [11, 36, 38, 44]. A more comprehensive review on the development of

asymptotic enumeration can be found in [45].

We will focus on the more ambitious task of finding an exact function for the

number of groups of order pn for fixed n but variable p. The asymptotic result of

Higman’s is the main result in the first of a series of papers [20, 21]. In the second

paper, Higman provided the first results towards an exact enumeration function for the

number of p-groups of a given order. Higman conjectured that the function f(n, p) has
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a particular form, and showed that if we restrict our attention to enumerating just a

certain class of p-groups, then that function has the form conjectured. This form was

dubbed “Polynomial On Residue Classes”, or PORC .

To understand this form we should look at a few examples of enumeration functions,

some which were available to Higman, and some which have only been recently discov-

ered but have the form he conjectured. Fix n, but allow p to vary. In this situation,

f(n, p) becomes a function of just p. The first few cases are listed below, with the first

instances of the publication of these results.

n f(n, p) Description Publication

1 1 Cyclic group of order p Cayley [8]

2 2 Cyclic group, and an elementary

abelian group

Cayley [8], Netto [37]

3 5 Three abelian groups and two non-

abelian groups

Cole & Glover [10],

Hölder [23], Young [51]

None of these results depend on p. The case when n = 4 depends on p, but does not

contain it as a variable:

f(4, p) =





14, if p = 2

15, if p ≥ 3

The n = 4 case was first published independently by Hölder [23] and Young [51]. The

first case in which p appears as a variable can be found in f(5, p) (first given by Bagnera

[4] via a counting method, not strictly an enumeration method):

f(5, p) =





51, p = 2

67, p = 3

61 + 2p + 2 gcd(p− 1, 3) + gcd(p− 1, 4), p ≥ 5
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The last two examples regard the groups of order p6 [19, 26, 40] and p7 [42]:

f(6, p) =





267 p = 2

504 p = 3

3p2 + 39p + 344 + 24 gcd(p− 1, 3)

+11 gcd(p− 1, 4) + 2 gcd(p− 1, 5) p ≥ 5

and

f(7, p) =





2328 p = 2

9310 p = 3

34297 p = 5

3p5 + 12p4 + 44p3 + 170p2 + 707p + 2455

+(4p2 + 44p + 291) · gcd(p− 1, 3)

+(p2 + 19p + 135) · gcd(p− 1, 4) p ≥ 7

+(3p + 31) · gcd(p− 1, 5) + 4 gcd(p− 1, 7)

+5 gcd(p− 1, 8) + gcd(p− 1, 9)

These too are primarily counting methods as they determine f(n, p) by examining the

list of presentations.

The pattern that seems to form is that with only finitely many exceptions, f(n, p)

is a sum of functions of the form a polynomial in p multiplied by gcd(p − 1, k) where

k is some positive integer. Alternatively, we can recognize f(n, p) as polynomial for

each residue class modulo some positive integer N . For f(6, p) this modulus would be

3 · 4 · 5 = 60. Similarly for f(7, p) this modulus would be 30240.

The form witnessed here is a stronger form of what Higman calls “Polynomial On

Residue Classes” (PORC ). Higman’s PORC functions do not have to have any relation

to the gcd function. The Higman definition of a PORC function is that the primes are

split into residue classes modulo some positive integer N , and for each residue class

modulo N there is an associated polynomial in the prime p. The collection of such
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polynomials is called a PORC function. Throughout this thesis, we will use a stronger

form PORC functions, generalizing the gcd form above. Specifically,

Definition (PORC Function). A function f defined over the primes is polynomial on

residue classes (PORC ) if it is the sum of terms of the form:

a(p) · b(p)

where a(p) is a product of terms of the form gcd(p, c(p)), b(p) and c(p) are polynomials

in p with rational coefficients, and the k are positive integers.

Every example of f(n, p) is PORC in this sense. We call the primes which do not

follow the general gcd form exceptional primes. For example, the primes 2 and 3 are

exceptional primes for the PORC function f(6, p). In all our examples it is assumed

that there are only finitely many exceptional primes.

1.2 Recent developments

Higman [21] conjectured that f(n, p) is a PORC function (in his general sense) for all

fixed n. If true, this would be remarkable; the current feeling is that the p-groups

are a “wild” collection, yet if Higman’s PORC conjecture is true, then they have an

elegant regularity. Higman’s paper [21] proved the PORC conjecture for a certain class

of p-groups called (in modern terminology) exponent-p class two groups. A p-group G

is of exponent-p class two if [G,G]Gp. We will explore these groups in the next chapter.

Until recently, there were no further advancements on Higman’s initial work. With

the aid of computers, further results (such as the p7 case [42]) were found to support

the conjecture. Recently the work of du Sautoy and others (for example, [13, 14]) have

attempted to prove Higman’s PORC conjecture via algebraic geometry, in particular

using zeta functions of groups. These developments are beyond the scope of this thesis,

but nevertheless are important to note.

Not much work has been done on algorithmic approaches to the enumeration prob-

lem. One of the most important developments in the listing of p-groups of a fixed prime-
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power order is the p-group generation algorithm of Newman [39] and O’Brien [41]. This

algorithm can be used to enumerate exponent p-class two p-groups for fixed p [15]. The

goal of this thesis is to provide another algorithmic method of enumerating groups of

exponent-p class two, but for variable prime p. Higman’s original paper [21] on the

PORC conjecture forms the basis for the theory for this algorithm.

1.3 Thesis overview

The primary goal of this thesis is to demonstrate that there is a practical algorithm such

that for fixed n, the algorithm can produce a function of p enumerating all p-groups of

order pn and exponent-p class two. These resulting functions are PORC functions, as

described on page 5.

Chapter 2 outlines the basic approach we take. It is based on the theory developed

by Higman [21]. The theory divides into a few isolated parts and we will treat each part

in Chapters 3 to 5. Each chapter will describe the associated theory and describe the al-

gorithms required. Chapter 6 will detail issues and strategies regarding implementation

of the algorithm. Chapter 7 will present results and further applications.

We must stress that Higman’s original paper [21] is the basis for this work. In it

he showed that the number of groups of order pn and exponent-p class two, for fixed

n and variable p, is a PORC function in p. His paper did not provide explicit results.

The task fulfilled by this thesis is to algorithmically generate these explicit results.



Chapter 2

Overview of the algorithm

Consider the lower exponent-p central series of a group G ([24], page 355)

G = P0(G) ≥ · · · ≥ Pi−1(G) ≥ Pi(G) ≥ · · ·

where Pi(G) = [Pi−1(G), G]Pi−1(G)p for i ≥ 1. If there exists a least integer c such that

Pc(G) = 1 then G has exponent-p class c. We will be interested in groups of exponent-p

class two. Higman [20] calls such groups Φ-class two groups since P1(G) is the Frattini

subgroup which is often denoted by Φ. We will use the more modern description.

Suppose we wanted to count exponent-p class two groups of order pn for given p and

n. Denote the associated counting function by f2(n, p). There are several algorithms

available to achieve this. One could list all groups of this order and determine how

many of them have exponent-p class two. This is a mammoth task, yet still a finite

one. Another method involves subdividing the task based on the structure of P1(G).

Suppose we have a finite, exponent-p class two p-group G whose subgroup P1(G) has

index pr in G and order ps. We will say that such a group has complexion1 (r, s). For

a fixed r, s and p, the number of isomorphism types of p-groups of complexion (r, s) is
1Higman [20] uses the notation Φ-complexion.

7



8

denoted g(r, s, p). It follows that

f2(n, p) =
n−1∑

r=1

g(r, n− r, p). (2.1)

O’Brien has implemented an effective algorithm in Magma [7] to compute g(r, s, p) via

the ClassTwo function. This function can calculate values of g(r, s, p) for a significant

range of values of r, s and p in reasonable time.

Can we do better? In 1960, Higman proved [21] that for a given r and s, there is a

PORC function in p that calculates g(r, s, p). To emphasis that this PORC function is

variable in p, we denote it by g(r, s; p) (note the semicolon). Moreover, by the appro-

priate substitution in Equation (2.1) there is a PORC function in p that enumerates

all exponent-p class two groups. We denote it by f2(n; p). That is, to calculate f2(n; p)

it suffices to calculate g(r, s; p). We will focus on the latter task.

Higman does not provide explicit functions for either f2(n; p) or g(r, s; p), nor does

he suggest that they can be computed from his work. Given that these PORC functions

exist, this suggests it would be profitable to try to find them. The goal of this thesis is to

pursue this avenue of inquiry and show that there is an algorithm that finds the PORC

functions f2(n; p) and g(r, s; p) for fixed n, or r and s, respectively. The underlying

philosophy is that we can construct this algorithm by analysing the proof of Higman’s

result that inspired the task, interpreting these results in terms of calculations and

filling in the gaps. As a result, the structure of the algorithm follows the series of

reductions that Higman used to prove Theorem 1.1.1 in [21]. This chapter will detail

this series of reductions and outline some of the theory. By the end of this chapter the

calculation of g(r, s; p) will be in a form suitable for algorithmic purposes. The body

of this thesis will explain the relevant theory and provide algorithms for the different

components of the main algorithm.
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2.1 Reducing the problem

As previously mentioned, the main focus of this thesis is to provide an algorithm to

find the PORC function in p that gives the number f2(n; p) of exponent-p class two

groups of order pn for fixed n. We use a series of reductions to bring this problem to a

state more amenable to algorithmic procedures. Many of these reductions are due to

Higman [20, 21]. The first reduction is given by Equation (2.1); namely it suffices to

find g(r, s; p) for appropriate values of r and s.

The rest of this chapter will detail three further major steps:

1. computing g(r, s; p) is equivalent to counting orbits of subspaces of a specific

vector space under a particular action;

2. the previous formulation is equivalent to a particular instance of orbit counting

via the Cauchy-Frobenius theorem with a particular group and point set, where

the group is a matrix group, the point set is a vector space and the action is the

standard matrix action;

3. given the Cauchy-Frobenius approach of finding g(r, s; p), we reduce the relevant

function to a form that is both algorithmically amenable and has the property

that our calculations keep p variable.

We will take each in order.

The vector spaces we will be dealing with will be finite-dimensional. Vector spaces

of dimension d over a field K are isomorphic to the canonical vector space Kd, where

an element of Kd is a column vector of length d. We will not usually distinguish an

arbitrary d-dimensional vector space over K from the column-vector representation of

Kd.

Our base formulation is the following theorem from Higman (Theorem 2.2 of [20]).

Theorem 2.1. Let Vr denote the r-dimensional vector space (Fp)r, and let Vr∧Vr be its

exterior square. If p > 2 then the number g(r, s; p) of isomorphism types of exponent-p

class two groups of complexion (r, s) is equal to the number of orbits of subspaces of
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codimension s in the vector space Vr ⊕ Vr ∧ Vr under the induced action of the linear

group acting on Vr.

Our focus is therefore to enumerate the orbits of subspaces under this particular

action. Note that this approach is not amenable for p = 2, so we consider 2 to be an

exceptional prime for the PORC function g(r, s; p). We can compute g(r, s, 2) explic-

itly using the aforementioned ClassTwo function. Also note that Higman’s theorem

concerns g(r, s, p) (that is, p is fixed), but he later proves that the number of orbits of

subspaces under this action is a PORC function in p, and so the result generalizes to

g(r, s; p).

The subsequent Cauchy-Frobenius approach to Theorem 2.1 will require us to know

explicit details regarding the action of the associated group and vector space. To do

this we will require a small amount of notation and theory. We will only be interested

in vector spaces over finite fields Fp and their associated linear groups, but most of the

theory can be generalized to arbitrary fields.

Let Vr be an r-dimensional vector space over the finite field Fp. We denote the full

linear group on this vector space as GL(r;Fp), or equivalently as GL(r; p). If we have a

vector space V of dimension r and W of dimension s, then we denote the linear group

acting on V ⊕W respecting the direct sum as GL(r, s; p).

To aid our explicit description, we will intentionally conflate a few concepts. We

will solely deal with finite-dimensional vector spaces over Fp. All d-dimensional vector

spaces over Fp are isomorphic as vector spaces. We will identify them all with (Fp)d,

considered as the length d column vectors with entries in Fp (where the basis is con-

sidered to be the standard canonical basis e1, . . . , ed where ei is the vector with 1 in

the ith row and zeroes elsewhere). Note that subspaces of the same dimension are

not considered the same. Since our vectors are represented as column vectors, linear

transformations are represented by matrices acting on the left. This also conflates the

group of linear transformations of a vector space and the matrix group acting on col-

umn vectors. Again, we do this to simplify and standardise the explicit description of

the vector spaces and groups we are dealing with.
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Let GL(r; p) be the full linear group acting on Vr. The vector space Vr ⊕ Vr ∧ Vr

can be seen to have dimension R = 1
2r(r + 1). Recall that a (linear) representation of

a group G in GL(n; p) is a homomorphism Γ : G → GL(n; p). The induced action of

GL(r; p) on Vr ⊕ Vr ∧ Vr can be viewed as the image of a representation Γ of GL(r; p)

into GL(R; p). Denote this image by Γ(GL(r; p)).

The image of a particular matrix g in the representation of the induced action of

Vr ∧ Vr is often called the second compound matrix of g [30, 34]. This is not to be

confused with the second induced matrix which is the induced action on Vr⊗Vr. Recall

that a 2-rowed minor of a matrix g is the determinant of a particular 2× 2 submatrix.

The second compound matrix of the matrix g, denoted C2(g), is the matrix whose

entries are the 2-rowed minors of g in the lexicographic ordering induced by the original

rows and columns [30, 34]. It is worthwhile noting that this representation is actually a

polynomial representation [18], that is, all the entries of C2(g) are polynomials in those

of g. The natural action of a matrix is trivially a polynomial representation of that

matrix, and so is the conjunction of the natural action of a matrix with the second

compound matrix of the same matrix. That is, Γ itself is a polynomial representation.

This is a fact we will exploit later in Chapter 4.

Given this group, we would like to be able to count the number of orbits of subspaces

of Vr ⊕ Vr ∧ Vr under this explicit induced action. We do not have many tools for

investigating orbits of subspaces. One of the most useful tools in orbit enumeration is

the Cauchy-Frobenius theorem (see pg 20, [24]).

Theorem 2.2 (Cauchy-Frobenius theorem). Let the finite group G act on a set of

points Ω. Then the number of orbits Ω under the action of G is equal to

1
|G|

∑

g∈G

χ(g),

where χ(g) is the number of points in Ω fixed by g (that is, χ(g) = |{x ∈ Ω | gx = x}|).

This formulation counts orbits of points under the action of a finite group. We have

a finite group G = GL(r; p) but we are acting on a set Ω of subspaces of Vr ⊕ Vr ∧ Vr.
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This choice of Ω is not helpful for our purposes. Therefore we will follow Higman’s

suggestion [21] to transform the problem of enumerating orbits of subspaces into an

equivalent problem that enumerates orbits of elements under a related group. The

elements here will be vectors of a particular vector space. The main advantage of this

approach is that it provides a clear path to an explicit description as the group G

will be a matrix group, the set Ω will be a vector space and the action will be matrix

multiplication.

Recall that Hom(V, W ) is the collection of all linear transformations taking vectors

in V to vectors in W . Supposing V is r-dimensional and W is s-dimensional, and we

represent both as vector spaces of column vectors then an element of Hom(V, W ) can

be represented as an s × r matrix. Note that in this representation Hom(V, W ) can

be considered an (r · s)-dimensional vector space. Since the entries of Hom(V, W ) are

independent, this means that Hom(V, W ) need not have row rank r. Furthermore, V

will be mapped to a subspace of W of dimension at most r.

In our case, we will be interested in the set Hom(VR−s, VR). This maps the

(R − s)-dimensional space VR−s into a subspace of dimension at most R − s in the

R-dimensional vector space VR. We have an explicit action of Γ(GL(r; p)) on VR so we

want to map our (R − s)-dimensional subspaces into this space, so we can act appro-

priately. All vector spaces VR−s given in terms of their basis can be seen as the result

of the action of an element from GL(R − s; p) on the canonical (R − s)-dimensional

vector space VR−s.

Reorganizing this information, we can see that the induced action of GL(r; p) on

a (R − s)-dimensional subspace of Vr ⊕ Vr ∧ Vr can be represented as the action of

Γ(GL(r; p)) on the left of Hom(VR−s, VR), and GL(R − s; p) on the right of it, all act-

ing on the canonical (R − s)-dimensional vector space VR−s. The orbits of subspaces

under the induced action of GL(r; p) on Vr ⊕ Vr ∧ Vr are the orbits of elements of

Hom(VR−s, VR) under the left and right action of Γ(GL(r; p)) and GL(R− s; p) respec-

tively since VR−s is fixed. This two-sided action translates the problem of enumerating

orbits of subspaces to enumerating orbits of elements. The group acting here is not
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GL(r; p) but is isomorphic to GL(r,R− s; p).

There are two further things to note regarding this formulation. Firstly, because of

our simplified representation of Hom(VR−s, VR) as R × (R − s) matrices of any rank,

this translation only counts the number of orbits of subspaces of dimension at most

R− s. Denote the resulting enumeration function by h(r,R− s; p). It follows that

g(r, s; p) = h(r,R− s; p)− h(r,R− s− 1; p) (2.2)

since the number of orbits of subspaces of dimension at most s but not of dimension

at most s− 1 is the number of orbits of subspaces of dimension exactly s. This is what

we require.

Secondly, consider a d-dimensional subspace V of the D-dimensional vector space

W over K. Let g be an element of GL(D; K). Since g is invertible, the image of V under

the action of g is also a d-dimensional subspace of W . Consider a vector v ∈ V and a

vector w ∈ W such that v is orthogonal to w. Both vectors remain orthogonal under

the action of g. Therefore, if V ′ is a subspace orthogonal to V , then gV is orthogonal

to gV ′. In particular, the orbit of V under the action of g induces an isomorphic orbit

of the dual space W \ V . Therefore the number of orbits of d-dimensional subspaces

is equal to the number of (D − d)-dimensional subspaces. This means that instead of

considering orbits of subspaces of codimension s in Vr ⊕ Vr ∧ Vr, we can count orbits

of subspaces of dimension s in the same space. Specifically, since h(r,R− s; p) counts

the number of orbits of subspaces of codimension s,

h(r,R− s; p) = h(r, s; p).

We are free to choose either one in our calculations. Typically if R− s is greater than

s, we can reduce computation by utilizing the duality and work with the smaller group

GL(r, s; p) instead of GL(r,R−s; p). For notational brevity, we will assume s is smaller

and use that.

Our counting theorem now expresses g(r, s; p) in terms of the number of orbits
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of matrices Hom(Vs, VR) under the two-sided action of GL(r, s; p) under a particular

representation. To simplify the analysis of the explicit matrix action, we would prefer

the matrix action to be matrix acting on a column vector from the left. Therefore

we require one last translation of this matrix action problem before it is suitable for

explicit use with the Cauchy-Frobenius theorem.

We will be using the following lemma to convert the two-sided action of matrices

acting on a third matrix into an equivalent left action of a matrix acting on a column

vector.

Let M be a matrix. Define vec(M) to be the column vector obtained by stacking

the columns of M , one on top of another. Let A be an m×n matrix and B an m′×n′

matrix. The Kronecker product of these two matrices, denoted A⊗B, is the mm′×nn′

matrix 


A11B A12B · · · A1nB

A21B A22B · · · A2nB

...
. . .

Am1B Am2B · · · AmnB




Lemma 2.3. Let A be an m×n matrix, B an m′×n′ matrix and X an n×m′ matrix.

Then

vec(AXB) = (BT ⊗A) · vec(X)

where BT is the transpose of B and A⊗ B denotes the Kronecker product of matrices

A and B.

We omit the proof of this result as it amounts to manipulation of indices. The proof

can be found in [28], page 410.

Since we are treating Hom(Vs, VR) as an (R ·s)-dimensional vector space, we do not

care if it is represented as a matrix or a column vector. Therefore we can use Lemma

2.3 to convert our two-sided action into a left action. Let Γ(s) be the homomorphism

taking Γ(GL(r; p)) × GL(s; p) into GL(R · s; p) via Lemma 2.3. This homomorphism

is a representation, and furthermore, it is a polynomial representation. We will look
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at the specifics of this representation in Chapter 4, but for now, we have converted

Theorem 2.1 into the following theorem.

Theorem 2.4. Let R = 1
2r(r + 1), and let VRs be the (R · s)-dimensional vector space

over Fp. Let G be the image of GL(r; p)⊕GL(s; p) under Γ(s) : (A,B) → (BT ⊗Γ(A)),

where Γ is the representation of GL(r; p) under the induced action on Vr ⊕ Vr ∧ Vr.

For p > 2, the number g(r, s; p) of isomorphism types of exponent-p class two groups

of complexion (r, s) is equal to h(r, s; p) − h(r, s − 1; p), where h(r, s; p) is the number

of orbits of elements of VRs under the action of G by usual matrix multiplication.

2.2 Main formulation via Cauchy-Frobenius

Theorem 2.4 allows us to consider Theorem 2.1 in light of the Cauchy-Frobenius theo-

rem where all the details of the action are explicit. That is we have a group G which is

the matrix representation of another group, and we have a set Ω = VRs. We can treat

these components abstractly and concentrate on computing

h(r, s; p) = (# orbits of Ω under G) =
1
|G|

∑

g∈G

χ(g). (2.3)

Corresponding to our original goal, we want the number of orbits to be a PORC function

in p. Specifically, p must be variable. This condition requires us to transform the

Cauchy-Frobenius theorem into an another form that permits this. This transformation

does not affect any of the reductions in the previous section, and also simplifies the

computational workload.

The number of orbits of elements in this situation is a PORC function in p, as

proved by Higman [21]. For this to be so, then the right-hand side of Equation (2.3)

must be a PORC function in p. The order of G = GL(r, s; p) is a known polynomial in

p, namely

|G| = |GL(r, s; p)| =
(

r−1∏

i=0

(pr − pi)

)
·
(

s−1∏

i=0

(ps − pi)

)
. (2.4)

Therefore our problem reduces to finding the PORC function that enumerates the total
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number of fixed points under our particular action of G, for fixed r and s.

Supposing we fixed r, s and p, there is an obvious, näıve algorithm: loop through

every element of GL(r, s; p) and compute the number of fixed points for each element.

This is an impractical algorithm and cannot work if we let p vary as the number of

elements and (in general) the number of fixed points for a given element varies greatly

with p. Nevertheless, this näıve algorithm is instructive in how we proceed from the

general statement in Equation (3.1).

Firstly we notice that the näıve algorithm is unnecessarily redundant: the number

of fixed points is constant over all elements of a given conjugacy class. In other words,

it is a class function. If we exploit this, we obtain the following theorem.

Theorem 2.5 (Modified Cauchy-Frobenius theorem). Under the same hypotheses as

Theorem 2.2, the number of orbits of elements under the action of G is

1
|G|

∑

c∈C

|c| · χ(gc),

where C is the collection of conjugacy classes in G, |c| is the number of elements in

the conjugacy class c, and χ(gc) is the number of elements fixed by the action of gc, a

representative element from c.

There are fewer conjugacy classes in a group than elements, so the näıve algorithm

becomes much more practical if we work over conjugacy classes.

Unfortunately, every part of this sum still depends on p: the set of conjugacy

classes, the size of a particular conjugacy class, and the number of fixed points of

a given element. The rest of this chapter briefly describes how we surmount these

obstacles whilst allowing p to vary.

The solution Higman proposes is to classify conjugacy classes by types (which we

will discuss in detail in the next chapter). Types classify conjugacy classes in linear

groups depending on how elements in the conjugacy class diagonalize, in a general

sense. Specifically, types abstract the concept of a rational canonical form of a matrix,

and this is done in such a way that the description is independent of the base field, and
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hence, of p. As a result, we have a classification of conjugacy classes that is independent

of p. Furthermore, the size of a conjugacy class of a given type and the number of fixed

points of a given element in a conjugacy class of a given type are both polynomials in

p. This means we can modify the formula in Theorem 2.5 to

1
|G|

∑

τ∈T

∑
c∈τ

|c| · χ(gc),

where T is the set of all types of GL(r, s; p). It turns out that the size of a conjugacy

class depends only on its type, so we may simplify the sum as

1
|G|

∑

τ∈T

|cτ |
∑
c∈τ

χ(gc),

where |cτ | is the size of any conjugacy class of type τ .

The innermost sum is still problematic as we want to avoid depending on particular

conjugacy classes (as they depend on the field, and hence, on p). To this end, we can

derive from the type and the representation of G a set called the master degeneracy set

Eτ which describes all the possible structural information that a conjugacy class of a

type has in relation to counting fixed points. A subset S ⊆ Eτ , called a degeneracy set ,

of the master degeneracy set corresponds to a set of conjugacy classes. Furthermore,

for conjugacy classes corresponding to the degeneract set S, the function χ(gc) depends

only on S, so we can amend the Cauchy-Frobenius formula further:

1
|G|

∑

τ∈T

|cτ |
∑

S⊆Eτ

∑

c∈S

χ(gc),

where the innermost sum is interpreted as “the sum over all conjugacy classes c with

degeneracy set S, a subset of the master degeneracy set Eτ”. Now since χ(gc) only

depends on S (and not on the particulars of conjugacy classes with structure given by

the degeneracy set S), we rewrite this term as χ(gS), and modify the Cauchy-Frobenius
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formula accordingly:
1
|G|

∑

τ∈T

|cτ |
∑

S⊆Eτ

χ(gS)
∑

c∈S

1.

Higman proved [21] that the sum
∑

c∈S 1 is a PORC function in p. We denote it by

d(S, τ ; p).

Our approach is now set: following the approach of using types as suggested by

Higman, we calculate h(r, s; p) (and hence g(r, s; p) and f2(n; p)) via

1
|G|

∑

τ∈T

|cτ |
∑

S⊆Eτ

χ(gS) · d(S, τ ; p). (2.5)

The size of G is known (Equation (2.4)), and we can easily calculate g(r, s; p) from

h(r, s; p) (via Equation (2.2)), and f2(n; p) from g(r, s; p) (via Equation (2.1)). The

body of this thesis describes the relevant theory behind each of the following tasks and

provides algorithms for them:

1. construct the set T of types for GL(r, s; p);

2. determine the size |cτ | of a conjugacy class of type τ ;

3. construct the master degeneracy set Eτ of a type τ ;

4. determine the number χ(gS) of fixed points for any element in any conjugacy

class with degeneracy set S and of type τ ;

5. and determine the number d(S, τ ; p) of conjugacy classes in GL(r, s; p) of a given

type τ and with degeneracy set S;

Following this is a discussion regarding implementation, and the results obtained

from the implementation. Lastly, we discuss results, and modifications and extensions

to the algorithm.



Chapter 3

Types

In this chapter we discuss types of conjugacy classes. Types classify conjugacy classes

of matrices in a manner independent of the field over which the matrices are defined.

Furthermore, types allow us to compute the size of a conjugacy class of a given type

in GL(n; p) in a way depending only on the type. This chapter is devoted to detailing

types and their properties, and presenting algorithms to list all types of a given size.

The term “type” seems to be first coined by J.A. Green in 1955 [17], but the concept

appears long before this. R. Steinberg used a similar concept in 1951 [50], but applied

it to characters of various representations. The work of D.E. Littlewood (for example,

[30]) used the concept without naming it. An even earlier form can be found in L.E.

Dickson’s book on linear groups [12]. We will be using types in a form closest to that

used by Higman [21], Green [17] and Macdonald [32, 33].

In a general sense, types are an abstraction of rational canonical forms of matrices

over fields. To make this notion more precise, we will need to review some theory and

introduce notation concerning conjugacy classes in GL(n; K), for any field K.

Let f(x) ∈ K[x] be a monic polynomial f(x) = xd +
∑d−1

i=0 aix
i. The companion

19
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matrix of f is the d× d matrix

C(f) = CK(f) =




0 0 · · · 0 0 −a0

1 0 · · · 0 0 −a1

0 1 · · · 0 0 −a2

. . .
...

0 0 · · · 1 0 −ad−2

0 0 · · · 0 1 −ad−1




.

Let λ be a positive integer and f(x) have degree d. Then Cλ(f) is the block matrix




C(f) Id

C(f) Id

. . . Id

C(f)




where Id is the d × d identity matrix, and there are λ blocks along the diagonal. In

particular, if f(x) = (x− α) then Cλ(f) is called the Jordan block Jλ(α).

We usually assume that f is irreducible in K[x]. Suppose f(x) splits into linear

factors in K[x] (where, K is the algebraic closure of K):

f(x) = (x− α1)(x− α2) · · · (x− αd).

Then the companion matrix CK(f) of f in K is equivalent to the direct sum of matrices

d⊕

i=1

(αi).

If K = Fp is a finite field, and f is a monic, irreducible polynomial of degree d over Fp

then f splits into linear factors in Fpd

f(x) = (x− α)(x− ασ) · · · (x− ασd−1
),
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where σ is the Frobenius automorphism σ : x 7→ xp of Fpd over Fp. The elements

α, ασ, . . . , ασd−1
are called Galois conjugates (to help differentiate them from “conju-

gates” which we shall use primarily for group-conjugate matrices in GL(n; K)). We

will prefer to use f and its companion matrix when f is monic and irreducible, but we

recognize that there is an equivalent form if we algebraically close the field. Later in

this thesis, for particular contexts, will prefer the algebraically closed approach for ease

of description.

The following result is well-known (see, for example, [25]).

Theorem 3.1. Let A ∈ GL(n; K). The matrix A is conjugate to a block matrix B of

the form Cλ1(f1)⊕ · · · ⊕ Cλr(fr), where the fi are monic irreducible polynomials over

K and the λi are positive integers. The matrix B is unique up to the order of the blocks

Cλi(fi).

The polynomials fi are the invariant factors of A. If we embed A in GL(n; K) the

invariant factors in this context are called the elementary divisors of A. Alternatively, if

we split each fi over K into linear factors gi,j then the elementary divisors are gi,j with

associated positive integer λi. The elementary divisors gi,j correspond to Jordan blocks

in the matrix B. In the literature there are many different definitions for the terms

“invariant factors” and “elementary divisors”. The above definitions will be standard

for this thesis.

The matrix B in Theorem 3.1 corresponding to the invariant factors of A over K

is called the rational canonical form of A. If all invariant factors are linear, then B is

the Jordan canonical form of A where the block matrices are the corresponding Jordan

blocks. Of course, the rational canonical form differs from the Jordan canonical form

only in the case when one of the irreducible polynomials fi has degree greater than one

over K. We will be concerned with finite fields, where there are irreducible polynomials

of every degree, and so we will customarily use the rational canonical form of matrices

over these fields.

Theorem 3.1 states that all matrices in GL(n; K) have a rational canonical form.

A simple corollary is that all matrices in a specific conjugacy class in GL(n; K) have
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the same rational canonical form. The invariant factors specify the rational canonical

form, and so each conjugacy class is classified by the invariant factors of the associated

rational canonical form. If we algebraically close the field, we find the same result

holds for elementary divisors. Generalizing this result to considering invariant factors

to be different only if their degree is different allows us to classify conjugacy classes

into types. The next section will elaborate on this generalization. This will be followed

by discussion on how to algorithmically generate all types, and the number of types of

a given size as well as the size of a conjugacy class of a given type. The chapter will

close with a short discussion of pursuing this sort of classification but using elementary

divisors instead, called the species classification. Species play a small but important

role in the following chapters.

3.1 Classification into types

There are three equivalent descriptions of types: the first two determine when two

matrices (or conjugacy classes) are of the same type, and the last description presents

types as combinatorial objects. We will describe all three approaches as we will be

using them in various contexts later on, depending on which is the most comfortable

to use. We will primarily use the combinatorial approach as it is easier to use.

Let A be a matrix in GL(n; K), and furthermore, suppose we know its invariant

factors {fi}. Let ρA(f) be a integer-partition-valued function taking an irreducible

polynomial f to the partition λ = (λ1, . . . , λk) where λi is the positive integer associated

to some instance of the invariant factor f . Let τ(A) be the complete set of pairs (f, λ)

where f is irreducible and λ = ρA(f) is nonzero. We repeat this for B in GL(n; K),

yielding a set τ(B) of pairs (g, µ). We say then that the matrices A and B are of the

same type if there is an isomorphism between τ(A) and τ(B) such that the pair (f, λ)

is isomorphic to (g, µ) if and only if the degree of f is the same as the degree of g, and

λ = µ. We can also say that A and B are type-equivalent .

Note that this description depends only on the degrees of the polynomials, not on

the polynomials themselves. We can therefore extend the definition for A in GL(n; K)
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and B in GL(n;L) where K and L are fields that do not have to be isomorphic. Thus

the notion of types is independent from the underlying fields. Also note that the

polynomials f in the pairs in τ(A) (and similarly, g in pairs of τ(B)) must be distinct

otherwise they should be combined as, say, (f, λ + λ′).

This first description gives a good intuition regarding the invariant factors of a

matrix and the corresponding type for this matrix. However in computations it may

be more useful to represent the associated companion matrices as companion matri-

ces for the roots of the polynomials in invariant factors rather than the polynomials

themselves (as per the discussion on page 21). Note that this does not derive the type-

equivalence via elementary divisors since the roots of a polynomial will be grouped

together, whereas the elementary divisor approach (examined in Section 3.5) does not

make this identification. This grouping is fundamental to the description.

The basic idea in the second description is that a pair (f, λ) for a matrix A is

replaced with the pairs (α1, λ), . . . , (αd, λ), where α1, . . . , αd are the roots of f in K.

These roots are conjugate under the Galois action of K[α1, . . . , αd] over K. Thus the

set τ(A) is replaced by a possibly larger set τ ′(A) = {(αi, λi)} (and similarly for τ(B),

replaced by τ ′(B) = {(βi, µi)}). The correspondence between τ(A) and τ(B) extends to

a correspondence between τ ′(A) and τ ′(B) such that with a possible reordering of the

pairs in τ ′(B), we have (αi, λ) is isomorphic to (βi, µ) if and only if λ = µ and for all j

such that αj is Galois conjugate over K to αi, then βj must be Galois conjugate over L to

βi. In short, two matrices are of the same type if there is a correspondence between their

elementary divisors accommodating both Galois conjugacy and the correspondence for

their relevant invariant factors.

Higman [21] uses this second description, but has a later modification to considering

the correspondence between sets of Galois conjugates of the same size. Thus a set of

conjugates α1, . . . , αd is represented by a set y, which has the appropriate partition λ

associated to it. Therefore the correspondence is between pairs (y, λ) and (y′, µ) such

that the partitions must be the same and the set y must have the same cardinality as

the set y′.



3.1. CLASSIFICATION INTO TYPES 24

These two descriptions allow us to determine when two matrices are of the same

type. Note that the important data was the degree of the polynomial (or equivalently,

the number of Galois conjugates) and the associated partition. To describe types as

combinatorial objects in themselves, we ignore all the technical details involved in the

fields and concentrate on the core data as suggested in the previous paragraphs.

A type of size n is a multiset τ of pairs (d, λ), where d is a positive integer and λ is

a nonzero integer partition, such that

∑

(d,λ)∈τ

d · |λ| = n. (3.1)

We call a pair (d, λ) in τ a type-parameter of that type. The types of GL(n; K) are all

the types of size n. We denote the set of all types of size n by Tn.

The first description of type-equivalence is equivalent to this description by a one-

to-one mapping of (f, λ) to a type-parameter (d, λ) such that f has degree d. Two

identical type-parameters given by (d, λ) represent two distinct pairs (f, λ) and (f ′, λ),

where f and f ′ are distinct polynomials of degree d over K. This distinction is strict:

the type {(d, λ), (d, λ′)} is not equivalent to {(d, λ + λ′)}.
We prefer the description of types as combinatorial objects as it is cleaner and

rightly de-emphasises the role of the underlying field. Types are independent of any

field K so we needn’t discuss the field at all.

As an example, T2 is the set of types:

τ1 = {(1, (1)), (1, (1))},

τ2 = {(1, (1, 1))},

τ3 = {(1, (2))},

τ4 = {(2, (1))}.

These four types have the following respective representations R1, . . . , R4 in terms of
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matrices in GL(n; p):

R1 =




α

β


 R2 =




α

α




R3 =




α 1

α


 R4 =




γ

γp




where α and β are nonzero elements in Fp with α 6= β, and γ is an element of Fp2 but

not Fp. This list is the same as the one provided by Green [17] (although the indexing

is different because of the way we order partitions). Note that R4 can be alternatively

given by the companion matrix of an irreducible quadratic over Fp, which is essentially

the difference between the first and second descriptions of type-equivalence. In explicit

matrix representations of types, we will prefer the split form because we have more

utility using Galois conjugates and it saves us from introducing more finite field elements

(and restrictions on them) than we require.

We can extend types for GL(n1, . . . , nr; K) by adding a third number to each type-

parameter called the location. A type in GL(n1, . . . , nr; K) is then given by triples

(d, λ, l) where l is an index indicating that GL(nl; K) has type with type-parameter

(d, λ). Two type-parameters (d, λ, l) and (d, λ, l′) need not represent two distinct in-

variant factors with polynomials of degree d. In other words, type-parameters only

define distinct invariant factors within their location.

Another important point is although the type of a matrix A in GL(n; K) depends

on the underlying field K, the types themselves are independent of any field. For a

particular field K, it may happen that there are no matrices of a certain type. For

example, in GL(4,F2) there are no elements of type {(2, 1), (2, 1)} as this requires two

distinct irreducible quadratics over F2, but only one such polynomial exists. These

exceptions pose no problem for us; the calculations we perform take care of them. In

the specific example above, the number of matrices in GL(4;Fp) of this type is

1
4
p8 − p7 + p6 +

1
2
p5 − 5

4
p4 +

1
2
p3 =

1
4
(p− 2) · (p− 1)3 · p3 · (p + 1).
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This polynomial has a factor of (p − 2), so for p = 2 there are no elements of that

type. All types of a given size are considered in our calculations, although some may

not contribute to the answer if we specialize the field.

3.2 Listing types

As mentioned at the end of Chapter 2, we will require a list of the types of GL(r, s; K).

This section details algorithms for this task. We generate types in (d, λ, l) form. Of

course, we can just generate the types in (d, λ) form for GL(r;K) and GL(s; K) in-

dividually and append the location afterwards. Thus it suffices to find the types for

GL(n;K), that is, the types of size n.

The general idea is to generate types in the (d, λ) form focussing on Equation (3.1):

∑

(d,λ)∈τ

d · |λ| = n.

Each type-parameter (d, λ) contributes a “weight” of d · |λ| to the final sum. These

weights are strictly positive integers that sum to n, and conversely, the weights partition

n. Thus to list types of size n, we first partition n into weights, and for each weight,

we replace it with an appropriate type-parameter (d, λ) of that weight. We break the

algorithm into two simple parts: the first finds all possible type-parameters of a given

weight, and the second partitions n and substitutes each part with a type-parameter

of the appropriate weight, thus creating a type.

The first algorithm is straightforward: given a weight k, we list all appropriate

degrees d, and for each such choice, list every appropriate choice of partition λ. This

order of choice is much simpler than the reverse. The possible d are just the divisors of k,

and the partitions are the integer partitions of k/d. It is clear that the type-parameters

generated are unique and complete since we consider all unique possibilities for d and

λ required for Equation (3.1).

Recall that pseudocode follows GAP conventions. Specifically, the function

DivisorsInt(k) lists all divisors of an integer k and the function Partitions(k) lists
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all partitions of size k. These functions can be found in GAP.

Algorithm 3.1 Generate all type-parameters of weight k

Require: Positive integer k
1: paramlist := [ ]
2: for d in DivisorsInt(k) do
3: for λ in Partitions(k/d) do
4: Add (d, λ) to paramlist.
5: od
6: od
7: return List of possible type-parameters paramlist

Given the algorithm to list all possible type-parameters of a particular size, we now

list all types of size n. Firstly we list all partitions of n. Let Λ = (λ1, . . . , λt) be such a

partition. For ease of presentation we write Λ in terms of multiplicities of parts (that

is, Λ = (1m1 , 2m2 , . . . ). Then for each nonzero mi, we find unordered mi-tuples of

type-parameters of weight i. That is, we allow repetition of type-parameters of a given

weight, but order is irrelevant.

The GAP command Partitions(k) gives partitions in the standard list form Λ =

(λ1, . . . , λt). In the algorithm that follows, we assume we can collect like parts as in the

multiplicity form of partitions described in the previous paragraph. We denote the size

of a part λ in this collected form by |λ|, and its multiplicity by #λ. This is simple to

achieve in code if we replace each element Λ in Partitions(k) by Collected(Λ). This

modification is not essential to the algorithm, it just makes the presentation simpler.

Algorithm 3.2 Generate all types of size n

Require: Positive integer n
1: Let Tn := [ ]
2: for Λ in Partitions(n) do
3: Let paramlist := [ ]
4: for λ in Λ do
5: param := UnorderedTuples(TypeParameters(|λ|), #λ)
6: Append param to paramlist
7: od
8: Add cartesian product of elements of paramlist to Tn

9: od
10: return The set of types Tn

The function UnorderedTuples(S, k) takes a set S and lists all unordered k-tuples
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of elements in S. The function TypeParameters(k) lists all type-parameters of size k,

which is the function detailed in Algorithm 3.1.

3.3 Number of types

Now that we have an algorithm to list all types, we want to know how many types

there are of a given size. The algorithms given run quickly for small inputs (which

is what we are primarily interested in). Therefore we can count types just by listing

them. However, we can derive a formula for this result which can give us an idea of

the rough computational workload. We will first present a generating function for the

number of types, and from that, derive a recursive function for the number of types of

any size.

Suppose we have a sequence of integers indexed by the non-negative integers. We

can encode this sequence as a function, say a(n). We say that the generating function

for this sequence (or equivalently, for a(n)) is the formal power series

A(x) =
∑

n≥0

a(n)xn.

We maintain the convention that the sequence is given by a function with a lowercase

label whose variable is n, and the corresponding generating function is given by the

appropriate uppercase label with a variable x. We also require that a(0) = 1 for all

sequences.

An important sequence of numbers is the number of (unrestricted) integer parti-

tions. We denote the number of partitions of an integer n by p(n). This has a generating

function

P (x) =
∑

n≥0

p(n)xn.

It is well-known [3] that

P (x) =
∏

n≥1

(1− xn)−1.

The following theorem provides us with a generating function for the number of
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types.

Theorem 3.2. Let t(n) be the number of types of size n. The generating function for

t(n) is

T (x) =
∑

n≥0

t(n)xn =
∏

n≥1

P (xn)p(n),

where p(n) is the number of (unrestricted) integer partitions of size n, and P (x) is its

generating function.

Steinberg [50] and Green [17] both provide this result without proof1. We will not

give a proof of this result, since it is just manipulation of generating functions according

to the description of types given by Equation (3.1) and the intuition behind the two

algorithms in the previous section.

The result most useful for our purposes is the following corollary.

Corollary 3.2.1. The number of types satisfies the following recursion equation

t(0) = 1,

t(n) =
1
n

n−1∑

i=0

g(n− i) · t(i) for n ≥ 1

where

g(n) =
∑

d|n
p(d) · d · σ(n/d),

where σ(k) is the sum of the divisors of k.

Proof. This proof follows a similar proof providing a recursion equation for the number

of partitions p(n) (see [3], page 323).

Let

T (x) =
∏

n≥1

P (xn)p(n) =
∏

n≥1

∏

i≥1

1
(1− xni)p(n)

=
∑

n≥0

t(n)xn.

1Steinberg conjectures the result, and Green states that “it is not hard to show”.
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Take the logarithmic derivative (the logarithm and then the derivative, see [2], page

98) of

T (x) =
∏

n≥1

∏

i≥1

1
(1− xni)p(n)

and then multiply both sides by x, yielding

T ′(x)
T (x)

=
∑

n≥1

∑

i≥1

i · n · p(n)
ixni

1− xni
.

Substituting T (x) =
∑

n≥0 t(n)xn and the standard power series expansion of (1−x)−1

in the previous equation, and rearranging we get

∑

n≥1

n · t(n) · xn =


∑

n≥1

∑

i≥1

∑

j≥1

i · n · p(n)xijn





∑

n≥0

t(n)xn


 .

If we compare the coefficients of xk on both sides we see that

k · t(k) =
k−1∑

i=0

g(k − i) · t(i),

where

g(n) =
∑

d|n
p(d) · d ·

∑

j|n/d

j. (∗)

Since the internal sum in Equation (∗) is just σ(n/d), we obtain the required result.

We can use this recursive formula to compute the first few values of t(n) which are

listed in the table below. This is identical to a list provided by Green [17] although

we include three extra terms. A list is available on-line [1] which contains many more

terms than in Table 3.1. Calculating further values of t(n) is not difficult providing one

has access to previously computed values of t(n) and g(n) (so as to reduce the amount

of recursion one needs to do).

For completeness it would be nice to obtain asymptotics for t(n), perhaps to apply

to run-time estimates of the main algorithm of this thesis. This turns out to be very

difficult. Analogous results found for p(n) are difficult to translate to t(n). However,
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n 1 2 3 4 5 6 7 8 9 10
t(n) 1 4 8 22 42 103 199 441 859 1784

Table 3.1: Number of types t(n) for n = 1, . . . , 10.

as mentioned before, we really only need types for small values of n; calculations later

in the algorithm significantly dominate the running time. Nevertheless, it is easy to see

that t(n) is far greater than p(n), and p(n) is asymptotically exponential (see [2], page

97, or [3], page 316).

3.4 Size of a conjugacy class in a type

Types provide us with another useful result: the size of a conjugacy class of a given

type defined over Fp is a polynomial in p that depends only on the type. In particular:

Theorem 3.3. Let τ be a type in GL(r, s; p) with type parameters given by (di, λi, li)

for i = 1, . . . , w. For a partition λ denote its conjugate partition by λ′ = (λ′1, . . . , λ
′
t)

and let

aλ(p) = p|λ|+2nλ

t∏

j=1

φλ′i−λ′i+1
(p−1)

where nλ =
∑t

i=1

(λ′i
2

)
, and λ′t+1 = 0, and

φr(p) =
r∏

i=1

(1− pi)

for r ≥ 1 and φ0(p) = 1. Then the size |cτ | of a conjugacy class in τ defined over Fp is

|cτ | = |GL(r, s; p)| ·
w∏

i=1

aλi(p
di)−1.

A proof of this result can be found on page 181 of [32], and a sketch for an alternative

proof is in [17].

We know |GL(r, s; p)| by Equation (2.4) on page 15, so computing |cτ | is straight-

forward. Note that the location property of the type-parameters do not play a role
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in |cτ |. In GAP the function aλ(p) can be computed with the undocumented function

SizePolynomialUnipotentClassGL(λ).

We will compute |cτ | for all four types in in GL(2; p). We know that |GL(2; p)| =

(p2 − 1) · (p2 − p). Let τ1 = {(1, (1)), (1, (1))}. Since

a(1)(p) = p1+2·0φ1−0(p−1)

= p · (1− p−1)

= (p− 1),

it follows that |cτ1 | = |GL(2; p)|/(p− 1)2 = p2 + p.

Now consider τ2 = {(1, (1, 1))}. Then

a(1,1)(p) = p2+2·1φ2−0(p−1)

= p4 · (1− p−1) · (1− p−2)

= p · (p− 1) · (p2 − 1).

Then |cτ2 | = |GL(2; p)|/(p · (p− 1) · (p2 − 1)) = 1. Note that the representative matrix

for both τ1 and τ2 are diagonal, but they have different conjugacy class sizes solely

because the diagonal entries are different or identical respectively.

Consider τ3 = {(1, (2))}. Then

a(2)(p) = p2+2·0φ1−1(p−1) · φ1−0(p−1)

= p2 · 1 · (1− p−1)

= p · (p− 1).

In this case, |cτ3 | = |GL(2; p)|/(p2 − p) = p2 − 1.

Finally consider τ4 = {(2, (1)}. We showed above that

a(1)(p) = (p− 1),
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so a(1)(p2) = (p2 − 1) and therefore |cτ4 | = |GL(2; p)|/(p2 − 1) = (p2 − p).

3.5 Species

Although our primary method of classifying conjugacy classes in GL(n;Fp) is via types,

there is another classification we will use. This classification is into species and is based

on the elementary divisors of matrices in the algebraic closure of the underlying field.

Note that species are not intentionally related to Joyal’s theory of combinatorial species

[5, 27]. They can be considered in this light, but this is of no benefit to us. Species,

like types, are independent of the base field.

The elementary divisors of a matrix A in GL(n;K) can be described by an integer-

partition-valued function ∆A(α) for nonzero α in the algebraic closure of K. The value

of this function is λ = (λ1, . . . , λk) if the elementary divisors of A corresponding to

(x−α) have corresponding positive integers λ1, . . . , λk. We can define conjugacy classes

to be equivalent by using the gross structure indicated by their elementary divisors, or

similarly, by ∆. Define the summation of two integer partitions as their concatenation

(with appropriate reordering of parts). Since there are only finitely many elementary

divisors of a matrix in GL(n;K), and each elementary divisor can only contribute a

finite part, we can form the sum
∑

α∈K

∆A(α).

Let A and B be any two matrices in GL(n; K). We say they are of the same species if

∑

α∈K

∆A(α) =
∑

α∈K

∆B(α).

Clearly if A is of the same species as B, then any conjugate of A is also of the

same species as B. Therefore species classify conjugacy classes in GL(n; K). We can

extend the definition of species to compare matrices with different base fields, so that
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A ∈ GL(n;K) and B ∈ GL(n; L) are of the same species if

∑

α∈K

∆A(α) =
∑

α∈L

∆B(α).

Therefore, a species is just an integer partition Λ and a matrix A is of that species if

its sum of ∆A(α) over α in the appropriate field is Λ.

Species also can classify types. For a type τ given as pairs (d, λ), the species of τ is

the partition given by the sum
⋃

(d,λ)∈τ

d⋃

i=1

{λ}.

That is, each type-parameter (d, λ) contributes d copies of λ to the concatenation-sum.

We can enumerate and list species of GL(n; K) easily, since they are just partitions

of n. We can also extend species for GL(n1, . . . , nk;K) by taking ordered k-tuples of

partitions of the appropriate integers.

We do not use species for classifying conjugacy classes as it is too weak. Species

do not allow us to calculate the size of conjugacy classes of that species as two types

can be of the same species but have different conjugacy class sizes. For example, types

τ = {(1, (1, 1))} and τ ′ = {(2, (1))} both are in the species (1, 1) but as we calculated in

the previous section, |cτ | = p2 + p, whereas |cτ ′ | = 1. We will have use for species: the

elementary divisors of A corresponding to (x − 1) indicate the number of fixed points

of A, which we will require. This will be explained in Chapter 4.



Chapter 4

Degeneracy sets

As indicated in Chapter 2, we need a way to distinguish conjugacy classes of matrices

of a given type. This needs to be independent of the field the matrices are defined over,

and is specific to finding the number of fixed points under a particular action. In our

case, this action is the image of a matrix under the representation Γ(s) as described in

Chapter 2.

This chapter introduces the concept of a degeneracy set , which is an invariant

assigned to every conjugacy class. It was developed by Higman for this task. Conjugacy

classes with the same degeneracy set have the same number of fixed points per element.

As such, we can classify conjugacy classes by their degeneracy set. This will be a

classification of conjugacy classes, not a characterization; conjugacy classes with the

same number of fixed points per element need not have the same degeneracy set.

Every degeneracy set is a subset of the master degeneracy set . The master degen-

eracy set contains all the information relevant to counting fixed points under a given

representation for conjugacy classes of a given type. Most importantly, the master

degeneracy set is independent of the field the matrices are defined over.

This chapter is devoted to constructing and describing degeneracy sets, and

computing the number of fixed points for an element in a conjugacy class with a

given degeneracy set. Throughout this chapter we will be primarily concerned with the

representation Γ(s), but our methods will be applicable for a wide range of

35
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representations, and our examples may use simpler representations.

The previous chapter showed how to calculate the size of a conjugacy class of a given

type. This chapter shows how to calculate the number of fixed points per element in

a conjugacy class of given type and degeneracy set. The next chapter shows how to

calculate the number of conjugacy classes with a given degeneracy set. Combining

these three results gives us the number of fixed points for elements in a given type and

by summing over all types, we use the results in Chapter 2 to obtain the number of

p-groups of exponent-p-class two.

To understand how we will approach the problem of counting fixed points,

consider the following example. For the moment, we do not concern ourselves with

being field-free, and fix a finite field Fp. Consider the group GL(2;Fp) and the type

τ = {(1, (1, 1))}. A representative element of a conjugacy class of this type is

A =




α

α


 , (4.1)

where α is a nonzero element of Fp. Each conjugacy class of this type corresponds to

a unique choice of α. This means there are exactly p− 1 conjugacy classes of this type

in GL(2;Fp).

Consider the induced (polynomial) representation Γ of GL(2;Fp) on V ⊕ V ∧ V

where V = (Fp)2. The vector space V ⊕ V ∧ V has dimension three, and therefore is

isomorphic to (Fp)3. The image of A under Γ, acting on (Fp)3, can be given explicitly

as

Γ(A) =




α

α

α2




. (4.2)

The number of fixed points of Γ(A) depends on the value of α. If α = 1 then there are

p3 fixed points. If α2 = 1 but α 6= 1, then there are p fixed points. If α2 6= 1, then

there is only one fixed point, the zero vector.

The number of fixed points of Γ(A) was easy to find as Γ(A) was in diagonal form.
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Counting fixed points for matrices in Jordan canonical form is just as straightforward.

A Jordan block

Jn(α) =




α 1

α 1
. . . 1

α




fixes a one-dimensional subspace if and only if α = 1. Otherwise there is only one fixed

point. In other words, if Jn(α) is defined over Fp, the number of fixed points of the

matrix Jn(α) is

# fixed points =





p if α = 1,

1 if α 6= 1.

(4.3)

Suppose for an arbitrary matrix A in GL(2;Fp) we can reduce Γ(A) to its Jordan

canonical form, and the Jordan blocks are given as Jni(αi). The elements αi will be in

terms of the entries in A since Γ is a polynomial representation. Then it is clear that

we can count the number of fixed points of Γ(A) by counting the number of elements

αi that are unity. If the number of αi equal to one is f , then there are pf fixed points

of Γ(A).

Following such an approach whilst remaining independent of the field Fp has two

difficulties: some matrices Γ(A) cannot be reduced to Jordan canonical form over Fp,

and we need to be able to determine which αi are equal to 1 in a manner independent

of the prime p. These difficulties can be overcome by an approach proposed by Higman:

1. For conjugacy classes of a given species, abstract the Jordan canonical form of

matrices in those classes defined over an appropriate field. This abstract Jordan

canonical form is called the guiding member of a species, denoted A.

2. Consider the Jordan canonical form of Γ(A). This is an abstraction of the Jordan

canonical form of Γ(A) for all matrices A of the same species. We can obtain a set

containing information about the Jordan blocks of Γ(A) in terms of the Jordan

blocks of A. This set is called the master predegeneracy set and depends only on
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the species and the representation.

3. The information in the master predegeneracy set can be brought back into the

context of types, whilst remaining independent of the field the matrices are defined

over. The master predegeneracy set translated into the context of a particular

type is called the master degeneracy set . It depends on the type.

4. Subsets of the master degeneracy set, called degeneracy sets, correspond to a set

of conjugacy classes of a given type but do not depend on the field. Conjugacy

classes defined over Fp with the same degeneracy set have the same number of

fixed points. We can determine this number as a function of p using just the

degeneracy set.

In short, we can count the number of fixed points for a matrix Γ(A) over all finite

fields by abstracting A first to the guiding member, then consider the representation

of the guiding member and then bring the fixed point information back down via types

using degeneracy sets. This approach allows us to count fixed points whilst keeping p

variable. Species and types enable this generality by being sufficiently independent of

the field A is defined over.

The term “degeneracy” was proposed by Higman [21], and it is used to mean that the

associated conjugacy class is limited or special, in light of the fixed point calculation.

That is, the degeneracy set represents the restrictions on a conjugacy class so that

it has the prescribed number of fixed points. These restrictions are similar to those

in Equation (4.3). We must stress this is a classification of conjugacy classes, not a

characterization. Each conjugacy class of a given type has an associated degeneracy

set. Every matrix defined over Fp in a conjugacy class with a given degeneracy set has

the same number of fixed points. This number depends only on p and the degeneracy

set.

The rest of the chapter is as follows. First we will discuss the guiding member of

a species and how to construct the master predegeneracy set. Then we will show how

to construct the master degeneracy set from the master predegeneracy set. Following
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this we show how to count the number of fixed points for a conjugacy class of a given

degeneracy set. We finish with a discussion of properties of degeneracy sets which form

a basis for the next chapter which deals with counting conjugacy classes with a given

degeneracy set.

4.1 The guiding member of a species

This section describes the first step in Higman’s approach: abstracting matrices of a

given species via the guiding member of that species. The theory in this section is due

to Higman. The terminology and presentation is inspired by Higman’s paper, although

certain details are original.

Recall that the species of a matrix is independent of the field that the matrix is

defined over. Matrices of the same type have the same species. The guiding member of

a species represents an abstraction of the Jordan canonical form for all matrices of that

species (defined over the appropriate splitting field), and in particular, all matrices of

a given type of that species. This abstraction frees us from algebraic considerations

particular to the field the matrices are defined over. The guiding member is defined

over a particular field that is “trouble-free” in an algebraic sense. The field we choose

is the complex numbers C. The field C has characteristic zero so we do not have any

unwanted coincidences like 2x = 0 which occurs in a field with even characteristic.

Matrices defined over C always have a Jordan canonical form over that field. The

field C also provides us with a countably infinite set X of elements x1, x2, . . . and their

inverses, where the elements of X are algebraically independent over Q. We want to use

these elements as variables so we do not want any algebraic relations between them.

We could have equivalently used the field Q(x1, x2, . . . , ) over countably many variables,

but it is much more convenient to choose algebraically independent elements from C

and just treat them like variables, which is what we will do. We assume the elements

of X have a fixed order.

A species is given by a partition, which we will denote by λ = (λ1, . . . , λv). The
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guiding member of a species given by λ is the matrix

A =
v⊕

i=1

Jλi(xi),

where xi ∈ X. Note that for a fixed species, we only require the first v elements from

X. We made X countably infinite so that we had a single, convenient context for all

species. For matrices in GL(r, s;Fp), we know that v is at most r + s. Typically for

GL(r, s;Fp) we will consider the guiding member in GL(r;Fp) and GL(s;Fp) separately,

though the xi will be chosen from x1, . . . , xr+s.

As an example, let λ = (2, 2). The guiding member of the species given by λ is

A =




x1 1

x1

x2 1

x2




.

Consider all the types of size 4 with species λ:

τ1 = {(1, (2)), (1, (2))}, τ2 = {(1, (2, 2))}, τ3 = {(2, (2))}.

These types have representative matrices A1, A2, and A3 respectively:

A1 =




β1 1

β1

β2 1

β2




, A2 =




β3 1

β3

β3 1

β3




, A3 =




β4 1

β4

βσ
4 1

βσ
4




,

where β1, β2, β3 ∈ Fp, and β4, β
σ
4 ∈ Fp2 . The matrices A1, A2 and A3 are in

Jordan canonical form. We can see how A represents all three matrices by ensuring

that each Jordan block is distinct, even if in a particular type, two Jordan blocks are

identical. Identical blocks, or blocks that are related by Galois conjugation (as in A3) is

a restriction from the type, not the species. These restrictions are included later when
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we specialize to a particular type.

Note that Higman defines the guiding member of a species to be the matrix

v⊕

i=1

xiJλi(1).

This matrix is conjugate to A over C. He chooses this form to make the proof of

Lemma 3.1 in [21] easier. For our approach, there is no advantage in adopting this

form.

4.2 Master predegeneracy set

Having abstracted the Jordan canonical form via the guiding member A, we now want

to consider the Jordan canonical form of Γ(A). In this section we assume the representa-

tion Γ is an arbitrary polynomial representation, although one made up of components

geared towards the representation we are most interested in: Γ(s) from Chapter 3. The

part of the main algorithm corresponding to this section is the only part that depends

on the representation Γ(s). That is, the algorithm is modular with respect to the

representation; if we want to use a different representation, we only need to change one

part of the main algorithm.

The Jordan canonical form of a matrix specifies its elementary divisors and vice-

versa. We will examine the Jordan canonical form of Γ(A) by considering the elementary

divisors of Γ(A) in terms of the elementary divisors of A. For the species given by

λ = (λ1, . . . , λv), the elementary divisors of A are (x− xi)λi , for i = 1, . . . , v.

All of the representations we consider will be polynomial representations. As such

the entries of Γ(A) are polynomials in terms of those of A. Specifically, every nonzero

entry of Γ(A) will be a sum of products of the form

xt1
1 · · ·xtv

v

for nonnegative integers t1, . . . , tv. The Jordan canonical form of Γ(A) also has this
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property. Equivalently, the elementary divisors of Γ(A) are of the form (x − α)m for

some positive integer m and α = xt1
1 · · ·xtv

v for some choice of t1, . . . , tv. Later we will

want to allow some ti to be negative, so we accommodate this generality now.

We will find the elementary divisors of Γ(A) by a “calculus of elementary divisors”.

This calculus transforms the set of elementary divisors of A to those of Γ(A) via trans-

formations related to how Γ takes A to its image. This is done via five rules, based

on the following results obtained from Marcus’ books on multilinear algebra [34, 35].

Throughout these results, A and B are matrices over C whose elementary divisors are

of the form (x − α)m where α 6= 0. We use positive integers m and n, but stress that

they do not relate to m and n used elsewhere in this thesis.

Theorem 4.1 (Elementary divisors of transposed matrices). The set of elementary

divisors of a matrix AT is identical to the set of elementary divisors of A.

Theorem 4.2 (Elementary divisors of direct sums). The set of elementary divisors of

A ⊕ B is the union of the set of elementary divisors of A with the set of elementary

divisors of B.

Theorem 4.3 (Elementary divisors of tensor products). Suppose (x − α)m is an ele-

mentary divisor of A and (x− β)n is an elementary divisor of B. They produce a set

(x− α)m ⊗ (x− β)n of elementary divisors of A⊗B

(x− α)m ⊗ (x− β)n :=
{

(x− αβ)m+n−(2t−1) | where t = 1, . . . ,min(m,n)
}

.

The set of all elementary divisors of A⊗B is the union of sets (x−α)m⊗ (x−β)n for

all choices of elementary divisors (x− α)m from A and (x− β)n from B.

Theorem 4.4 (Elementary divisors of compound matrices). Suppose A = A1 ⊕ A2,

and A acts on the corresponding vector space U = V ⊕W . Let Cm(A) be the induced

action of A on
∧m

i=1 U , that is, the mth compound matrix of A. Then the elementary

divisors of Cm(A) are the same as those of the linear map

m⊕

i=0

Ci(A1)⊗ Cm−i(A2).
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The matrices Ci(A1) and Cm−i(A2) are regarded as linear maps on
∧i V and

∧m−i W

respectively, for all i = 0, . . . ,m, where
∧0 V and

∧0 W are both isomorphic to the

trivial vector space.

For the last theorem, suppose we have natural numbers n ≥ m. Let p(r,m, n)

be the number of integer partitions of r into not more than m parts, each part

of size no greater than n − m. We define p(0,m, n) = 1 for all m and n. Let

c(r,m, n) = p(r,m, n)− p(r − 1,m, n) for r ≥ 1, and c(0,m, n) = 1.

Theorem 4.5 (Elementary divisors of the compound matrix of a single block). Let A

be the Jordan block Jn(α), with α nonzero. Then for m > 0, the elementary divisors of

Cm(A) are

(x− αm)m(n−m)−(2r−1),

repeated c(r,m, n) times, where r = 0, . . . , m(n −m). For m = 0, we say that Cm(A)

has no elementary divisors.

With these five results, we can form a calculus of elementary divisors for our pur-

poses. Our calculus transforms sets of elementary divisors via the above results. For

brevity we represent an elementary divisor (x − α)m by a pair (α,m). Let X and Y

be sets of pairs representing elementary divisors. We have four operations on sets of

elementary divisors: two unary operators (·)T and Cm(·), and two binary operators ⊕
and ⊗. These operators have the following rules, corresponding to the previous five

results.

Theorem 4.6. Let X and Y be sets of pairs (α, m), each representing an elementary

divisor of a particular matrix, where α ∈ C and m is a positive integer. We define a

calculus of elementary divisors using the operators (·)T , ⊕, ⊗ and Cm(·) satisfying:

Rule 1. XT = X.

Rule 2. X ⊕ Y = X ∪ Y .

Rule 3. X ⊗Y = {(αβ, m+n− (2t− 1)) | (α, m) ∈ X, (β, n) ∈ Y, 1 ≤ t ≤ min(m,n)}.
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Rule 4. Suppose X = X ′ ∪X ′′, with X ′ and X ′′ both nonempty. Then

Cm(X) =
m⊕

i=0

Ci(X ′)⊗ Cm−i(X ′′).

Rule 5. Suppose X = {(α, n)} and c(r,m, n) is defined as before. Then if m > 0,

Cm(X) contains c(r,m, n) copies of (αm,m(n − m) − (2r − 1)), for r =

0, . . . , m(n−m). If m = 0 then Cm(X) = ∅.

By recursively applying these rules, we can calculate the elementary divisors of

images of matrices under various kinds of representations. Note that ⊕ and ⊗ are

commutative, and Cm(X) in Rule 4 does not depend on how the set X is partitioned

into X ′ and X ′′. To compute Cm(X) in this case, we take X ′ to be a singleton set (and

thus Rule 5 applies) and recursively apply Rule 4 to X \X ′.

Applying these rules is a nuisance to do by hand, but it is particularly easy using a

computer. Since the operations require very little calculation, the associated algorithm

is fast.

We now show how to use this calculus of elementary divisors for the particular

representation Γ(s). Let A ∈ GL(r; K) have a set of elementary divisors given by X in

(α,m) pair form, and let B ∈ GL(s;K) have a set of elementary divisors given by Y in

the same form. In terms of the calculus of elementary divisors, the elementary divisors

of Γ(s)(A,B) are given by

Y T ⊗ (X ⊕ C2(X)). (4.4)

Of course Y = Y T so we can simplify this in the obvious way.

Suppose we know the types of A and B. From each type we can determine the

species of A and B, and from that, the guiding members of those species. From the

guiding member of the species of A, we obtain a matrix

A =
v1⊕

i=1

Jλi(xi),

where the λi are the parts of the partition given by the species of A and v1 is sum of
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di · µi over all type-parameters (di, µi, 1). We obtain a similar matrix A′ from B,

A′ =
v2⊕

i=v1+1

Jλ′i(xi),

where λ′i are the parts of the partition given by the species of B and v2 is the sum of

di · µi over all type-parameters (di, µi, 2), plus v1 (to keep the indices of the xi in A′

from colliding with those in A). Therefore our sets X and Y of elementary divisors

(represented as pairs) are

X = {(xi, λi) | i = 1, 2, . . . }, and Y = {(x′i, λ′i) | i = 1, 2, . . . }.

Given these two sets and the representation given by (4.4), we can apply the rules in

Theorem 4.6 to obtain the elementary divisors of Γ(s)(A,B). The elementary divisors

of Γ(s)(A,B) are pairs of the form (xt1
1 . . . xtv

v ,m) where v = r + s. From the set of

products xt1
1 . . . xtv

v we obtain a set of tuples (t1, . . . , tv). This set of tuples is called the

master predegeneracy set and we denote it by T . We choose this tuple form as we will

eventually map the elements xi to finite field elements and the exponents will be the

only information we need to consider.

Note that in the process of creating the tuples (t1, . . . , tv) in T , we discard the

associated integers m from the pair representing elementary divisors. This information

is irrelevant to counting fixed points as we only need to know that it is positive, which

we already assume (since it corresponds to an elementary divisor (x− xt1
1 . . . xtv

v )m.)

4.3 Master degeneracy set

The master predegeneracy set contains all the information regarding the Jordan

canonical form of Γ(A). In other words, this information is in the context of species.

Other results in this thesis rely on the context of types. For example, the size of a

conjugacy class of a given type is a specific polynomial depending only on the type. A

similar result does not exist for species. Therefore we would like to take the information
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in the master predegeneracy set and bring it back down into the context of types.

To do this we need to undo some of the generalization that took Jordan blocks of a

representative element of a type to Jordan blocks in the guiding member of the species.

On page 40 there are examples of the generalization process (three types are shown to

have the same guiding member). That example may be helpful in visualizing what is

going on in the context of the Jordan canonical form.

To determine the species given by a partition λ of a type τ , we concatenate the

partitions of the type-parameters, taken with multiplicity given by its degree. For

example, the type {(1, (1, 2)), (2, (3))} has species (1, 2, 3, 3). Reversing this process,

and thus taking a species to a particular type, collects parts in λ into sub-partitions

and collects a selection of these sub-partitions into a single type-parameter. In the

example before, we first collect (1, 2, 3, 3) into sub-partitions (1, 2), (3), and (3). The

last two sub-partitions are collected to form a type-parameter of degree 2, and the first

sub-partition forms a type-parameter of degree 1. We can visualize this as

λ = (1, 2, 3, 3) = ( 1, 2︸︷︷︸
(1,(1,2))

, 3, 3︸︷︷︸
(2,(3))

).

Recall that via the guiding member of a species, a part λi in the partition λ has a

corresponding element xi. The process collecting parts in λ can therefore be considered

as collecting the elements xi. The two stages of collection can be interpreted as:

1. Collecting parts λi into a sub-partition identifies the elements xi for the appro-

priate indices i;

2. Collecting sub-partitions into type-parameters collects elements xi in a way

analogous to identifying finite field elements as Galois conjugates.

This last stage means that specializing from a species to a type τ , we have an induced

automorphism στ that permutes the elements xi according to how these elements collect

according to the type.

For example, take again the species given by λ = (1, 2, 3, 3) and the type
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τ = {(1, (1, 2)), (2, (3))}. The guiding member of the species specifies elements x1,

x2, x3 and x4 corresponding to parts 1, 2, 3 and 3 respectively. The process that forms

the type-parameter (1, (1, 2)) identifies x1 and x2. The process that forms the type-

parameter (2, (3)) collects the elements x3 and x4, but then specifies that x4 = (x3)στ

via the “Galois conjugation” analogy.

The process taking a species to a particular type τ allows us to write a term

xt1
1 . . . xtv

v in terms of elements xi ∈ A and the automorphism στ . If in the types

context we are permitted to renumber the indices of xi from x1 to xw for convenience,

a term

xt1
1 · · ·xtv

v

is rewritten in the types context as a term

xu1
1 · · ·xuw

w ,

where the exponents ui are polynomials in σ with integer coefficients. That is, a term

xa0+σa1+···+σdad
i is equivalent to (xi)a0 · (xσ

i )a1 · · · (xσd

i )ad .

In the types context, there are w variables x1, . . . , xw — precisely the number of type-

parameters in τ . Furthermore, the variable xi in the types context is associated to

the type-parameter (di, µi, li). That is, we keep τ ordered and associate the ith type-

parameter to the ith element xi of X.

The translation from the species context to the context of a particular type τ restates

the master predegeneracy set T as a set called the master degeneracy set , denoted Eτ .

It takes a tuple (t1, . . . , tv) to (u1, . . . , uw). The master degeneracy set Eτ describes

the Jordan canonical form of Γ(Aτ ) where Aτ is the analogue of the guiding member

of a species, but for a type τ . In other words, A translates to Aτ according to how the

species specializes to the type τ .
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4.4 Number of fixed points

The master degeneracy set Eτ gives us the general structure of the Jordan canonical

form of Γ(A) for a matrix A of a given type. We will use this structure to choose

conjugacy classes defined over finite fields such that the elements in these conjugacy

classes all have the same number of fixed points.

Let x1, . . . , xw be the variables used in the master degeneracy set for the type τ .

Each variable represents a type-parameter in τ . If d is the least common multiple of the

degrees di of the type-parameters (di, µi, li) ∈ τ , then there is an associated finite field

Fq for q = pd. A matrix of type τ read over Fq has a Jordan canonical form. We can

specify a conjugacy class in τ read over Fq by what is called a specialization. A special-

ization is a map φ taking x1, . . . , xw and their στ conjugates to F∗q , the multiplicative

group of Fq, with the following conditions:

• φ(xi) ∈ F∗qi
for qi = pdi , but note that φ(xi) might be in a proper subfield of Fqi ;

• σ · φ(xi) = φ(xστ
i ).

In other words, a specialization maps the variables xi to finite field elements, weakly

respecting the conditions from the type τ : the choice of φ(xi) do not have to be distinct

and φ(xi) need not have exactly di Galois conjugates. This gives us the freedom to

use specializations without worrying about the technicalities required by the type. We

impose the restrictions from the type in other parts of the algorithm. This is described

in the next section.

Suppose φ is a specialization taking xi to βi for i = 1, . . . , w. We can form the

image of a matrix under φ by mapping each of its entries via φ. The image of Aτ under

a specialization φ gives a representative element of a conjugacy class of type τ . The

representative element of the conjugacy class given by the specialization is formed by

replacing every Jordan block Jk(xi) in Aτ with Jk(βi).

Similarly, the image of Γ(Aτ ) under a specialization φ yields a matrix Γ(A) where

A is a representative element of a particular conjugacy class. Abstracting conjugacy
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classes through species, then specializing back down through types permits this co-

herency of Γ(Aτ ) to Γ(A) via a specialization. This is the value of Higman’s approach.

A conjugacy class of a certain type is given by a specialization. The question we

now ask is: how many fixed points does an element of a particular conjugacy class,

under the image of a representation Γ, have? Recall that in Equation (4.3), a Jordan

block Jn(α) in a matrix has p fixed points over Fp if and only if α = 1, and has 1

fixed point otherwise. Therefore, to compute the number of fixed points of a matrix

Γ(A), we need to know its Jordan blocks. If A is the specialization of Aτ via the map

φ(xi) = βi, then the Jordan blocks of Γ(A) are Jk(β) for some integer k and

β = βu1
1 · · ·βuw

w

where (u1, . . . , uw) is an element of the master degeneracy set Eτ . Thus a particular

Jordan block Jk(β) has p fixed points if

βu1
1 · · ·βuw

w = 1. (4.5)

This depends on the choice of βi, and hence the specialization φ. A specialization will

satisfy a subset of the equations of the form in Equation (4.5). Let S be the set of

tuples (u1, . . . , uw) for which Equation (4.5) holds for that particular specialization.

This will be some (possibly empty) subset of Eτ . We call such a set the degeneracy set

of the specialization φ.

Two different specializations can satisfy the same set of equations, and thus have

the same degeneracy set. Since these equations correspond to Jordan blocks in Γ(A),

specializations with the same degeneracy set correspond to conjugacy classes such that

their elements have the same number of fixed points under the image of Γ. We say that a

conjugacy class given by a specialization with degeneracy set S has “degeneracy” given

by S. Therefore the conjugacy classes with degeneracy S all have the same number of

fixed points under Γ, and thus we have our classification of conjugacy classes of a given

type.
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From this discussion it follows that the number of fixed points of an element in a

conjugacy class, defined over Fp, under the image of Γ, depends only on the type of the

conjugacy class and the degeneracy set S. The remainder of this section is devoted to

showing how to calculate it.

A degeneracy set S specifies a set of equations in the form of Equation (4.5). By

definition, these are the only equations specified by elements in Eτ that hold. Let

β(u) = βu1
1 · · ·βuw

w for u = (u1, . . . , uw) ∈ Eτ and some specialization φ : xi 7→ βi. Let

A be the matrix formed by the specialization φ applied to Aτ . For u ∈ S, there is at

least one Jordan block in A corresponding to Jk(β(u)). Let fS be the total number of

Jordan blocks Jk(β(u)) in A for some positive integer k and some u ∈ S. Let χ(A) be

the number of fixed points of Γ(A), for A in a conjugacy class with degeneracy set S.

Then if A is defined over Fp

χ(A) = pfS .

This does not depend on the specialization, so we pick an element gS that represents

all conjugacy classes of degeneracy S. Therefore we want to calculate

χ(gS) = pfS

and thus calculating fS suffices to find χ(A) for all conjugacy classes with degeneracy

S, regardless of the specialization taking Aτ to A.

We now want to compute fS for a given degeneracy set S. Note that fS is zero if S

is empty. Otherwise, fS is positive. Furthermore, fS is at least as large as S since there

must be a Jordan block for each equation given by S. The only complication is that a

single equation β(u) = 1 may have multiple Jordan blocks. For example, let our species

be given by λ = (1, 1) and let our type be τ = {(1, (1, 1))}. The master predegeneracy

set specifies terms of the form xt1
1 xt2

2 . The master degeneracy set specifies terms of the

form xu1
1 since x1 and x2 are identified as x1 by the species-to-type translation, and

u1 = t1+t2. For simplicity’s sake, let the representation Γ be the natural representation.

In this case the master predegeneracy set is T = {(1, 0), (0, 1)} and the master degen-
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eracy set Eτ = {(1)}. The single element in Eτ actually corresponds to two Jordan

blocks. Therefore if S = Eτ , then fS = 2, and so a conjugacy class of degeneracy S

has p2 fixed points per element.

Recall that the master degeneracy set is the translation of the master predegeneracy

set to the types context. Therefore a degeneracy set S is the translation of some

subset S′ of the master predegeneracy set. The size of S′ is fS as an element of the

master predegeneracy set corresponds to exactly one Jordan block. Therefore during

the translation process we keep track of the map ψ : (t1, . . . , tv) 7→ (u1, . . . , uw), and

then the preimage ψ−1(S) of S under ψ is the set S′, and so fS = |ψ−1(S)|.

4.5 Base equalities and inequalities

Degeneracy sets contain information relevant to counting fixed points for a particular

type and representation. A conjugacy class with a given degeneracy S is the result

of a specialization satisfying equations specified by S. However, specializations for a

particular conjugacy class are only restricted by the degeneracy, and may not respect

the restrictions imposed by the type. For example, a specialization φ may choose the

same value for elements βi and βj that are supposed to correspond to different type

parameters, and hence be distinct. Such restrictions are irrelevant to calculating the

number of fixed points for an element in a conjugacy class of degeneracy S. However,

it is relevant to the number of conjugacy classes with degeneracy S (the calculation

of which is the focus of Chapter 5). For the purpose of counting conjugacy classes

with degeneracy S, we create another set in the same form as S but it encapsulates

the restrictions specified by the type. This set is called the base type inequalities for

reasons soon to be apparent.

Recall that if u ∈ S then any specialization with that degeneracy must satisfy the

equation β(u) = 1. Conversely, if u ∈ Eτ but u 6∈ S, then a specialization must not

satisfy β(u) = 1. That is, β(u) 6= 1 in this case. Therefore a degeneracy set specifies a

set of equations and inequalities a specialization with that degeneracy set must obey.

The base type inequalities is a set of tuples u′ that are never contained in a degeneracy
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set, and thus always specify that β(u′) 6= 1. As mentioned before, these elements u′

correspond to restrictions imposed by the type.

As an example of these inequalities, consider a small example. Suppose βi and

βj are finite field elements that must be distinct as they correspond to distinct type-

parameters. This is simply stated as βi 6= βj . Equations specified by the elements in the

master degeneracy set are always of the form β(u) = βu1
1 · · ·βuw

w = 1, and inequalities

as βu1
1 · · ·βuw

w 6= 1. We can rewrite our inequality βi 6= βj as βiβ
−1
j 6= 1. We write this

in tuple form (u1, . . . , uw) as

(0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0),

where 1 is in the ith position and −1 in the jth position. This is enforced as an

inequality by not including it in any degeneracy set.

Specializations yielding conjugacy classes of a given type must satisfy the restric-

tions given by the base type inequalities. We could also impose equalities, by con-

structing a set (called the base type equalities) and requiring that every degeneracy set

S contain this set. We will not require this extension, although the algorithm can easily

accommodate it. This extension may be useful for, say, representations of GL(r, s; K)

into GL(m; K) modulo some normal subgroup. This is beyond the scope of this thesis.

We could conceivably also use it to reduce the number of types we work with so that,

for example, instead of considering the distinct types {(1, (1, 1))} and {(1, (1)), (1, (1))},
we can just take the latter and impose equalities in the degeneracy sets to obtain the

former type. However, this method interferes with calculating the size of a conjugacy

class of that type, and also substantially increases computation time beyond what we’d

expect to save by considering the two types separately. So we do not consider this

approach. Nevertheless, the algorithm we present has the capability to include base

type equalities if a need arose.



4.5. BASE EQUALITIES AND INEQUALITIES 53

4.5.1 Constructing the base type inequalities

In Lemma 3.3 of [21], Higman outlines the different inequalities we will require. Suppose

we have type-parameters y1, . . . , yw, where yi represents the triple (di, λi, li) as explained

in Chapter 3. The generic specialization on this type chooses a value of βi for the type-

parameter yi. The first requirement is that

βi = βσd

i (4.6)

where d = di, but

βi 6= βσb

i (4.7)

for any proper divisor b of di. This is interpreted as βi must have degree exactly di.

Also, if type-parameters yi and yj are in the same location (that is, li = lj but i 6= j)

then elements βi must not be conjugate to βj (as they are supposed to be from distinct

sets of Galois conjugates). Therefore for each pair (i, j) with i 6= j and li = lj ,

βi 6= βσb

j , for b = 0, 1, . . . , dj − 1. (4.8)

The set of base type inequalities are simply those from (4.7) and (4.8), written in tuple

form. The equalities in Equation (4.6) could possibly be incorporated in the base type

equalities, but in practice we implicitly include these equalities by requiring for each

i = 1, . . . , w, the polynomial ui in σ from

βu1
1 · · ·βuw

w = 1

has degree at most di − 1. In the implementation of the algorithm, the polyno-

mial u = a0 + a1σ + · · · + adi−1σ
di−1 is stored as a fixed-length vector of integers

(a0, . . . , adi−1). Galois conjugation σ acts on this vector by cyclically permuting the

entries in the appropriate manner. This is how we implement the equalities obtained

from Equation (4.6).
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4.6 Symmetries of degeneracy sets

Given a master degeneracy set Eτ of size N , there will be 2N possible degeneracy

sets. From a computational point of view, this is usually too many; the size of Eτ

does not have to be too large for the collection of all degeneracy sets to be unman-

ageable. However, due to the particular framework we have at the moment, we can

take advantage of certain symmetries in the degeneracy sets to alleviate this problem.

Take for example the type τ = {(1, (1)), (1, (1))} and the natural representation so

that Eτ = {(1, 0), (0, 1)}. The element (1, 0) corresponds to the equation β1 = 1, and

the element (0, 1) to the equation β2 = 1. The two associated type-parameters y1

and y2 are equivalent so a degeneracy set S = {(1, 0)} is equivalent to the degeneracy

set S′ = {(0, 1)}. The type-parameters relate to the rational canonical form which is

supposed to be independent of the ordering of the blocks, or equivalently, of the ordering

of the type-parameters. The fixed point information will be the same. Specialization

with degeneracy set S gives precisely the same conjugacy class as a specialization with

degeneracy S′, mapping the elements xi to βi in an equivalent manner. Therefore to

obtain the set of degeneracy sets yielding distinct sets of conjugacy classes, we formulate

an equivalence of degeneracy sets and pick one representative from each equivalence

class.

There are three steps to defining our equivalence of degeneracy sets. Firstly, we

create an equivalence of type-parameters. We can then create an equivalence of elements

from the master degeneracy set based on the equivalence of type-parameters. This

equivalence of elements in the master degeneracy set, combined with the Galois action

σ, induces the required equivalence of degeneracy sets. The details follow.

Suppose we have type-parameters y1, . . . , yw. Two type-parameters yi and yj are

equivalent if and only if their degrees, partitions and locations are equal. That is, if

yi = (di, λi, li) and yj = (dj , λj , lj) then yi ∼ yj if and only if di = dj , λi = λj and

li = lj . This is easily shown to be an equivalence relation. This equivalence induces a

group action that permutes the indices on the yi such that each orbit corresponds to

a set of mutually equivalent type-parameters. Denote the corresponding permutation
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group by G.

The equivalence amongst type-parameters induces an equivalence of elements from

Eτ . Let u = (u1, . . . , uw) be an element of Eτ corresponding to an equation

βu1
1 · · ·βuw

w = 1.

If ρ is an element of G, it acts on the type-parameters by ρ · βi = β(i)ρ. In other words,

it permutes the indices. This induces an action of ρ on u:

ρ · u = ρ · (u1, . . . , uw) = (u(1)ρ, . . . , u(w)ρ).

This permutes the elements of the vector u. Two elements u and u′ from Eτ are

equivalent if there is an element ρ ∈ G such that ρ · u = u′. The Galois action σ also

induces an equivalence on elements of Eτ . Recall that ui is a polynomial in σ with

integral coefficients with maximum degree di− 1, which can be represented as a vector

(a0, . . . , adi−1). The Galois action σ acts on this vector by cyclically permuting the

indices. That is,

σ · (a0, . . . , adi−1) = (adi−1, a0, . . . , adi−2).

This action on such polynomials induces an action on tuples of them:

σ · (u1, . . . , uw) = (σu1, . . . , σuw).

This is an action on elements of Eτ , and so two elements u and u′ from Eτ are equivalent

if σ · u = u′. Since

βu1
1 · · ·βuw

w = 1,

then it follows that

(βu1
1 · · ·βuw

w )σ = βσu1
1 · · ·βσuw

w = 1.

We encapsulate both equivalences via the orbits of a group action. The group

acting will be denoted H, and is the direct product of the group of permutations G
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and the group corresponding to the Galois action σ. The group H acts on elements

on Eτ . This induces an action on subsets of Eτ , namely the degeneracy sets. That is,

degeneracy sets S and S′ are equivalent if there exists a h ∈ H such that h · S = S′,

where h · S = {h · s | s ∈ S}. The group H depends only on the type as G depends on

the equivalence of type-parameters, and the Galois action σ generates a cyclic group

such that σd = 1, where d is the lowest common multiple of the degrees of the type-

parameters.

Note that the action of H preserves the size of the degeneracy set. This action

partitions the collection of degeneracy sets into orbits. Each orbit corresponds to a set of

conjugacy classes with equivalent degeneracy sets such that a specialization corresponds

to the same conjugacy class. We only want to consider each conjugacy class once, so

we need only consider a representative of each orbit. We will call representatives of

these orbits representative degeneracy sets.

In practice the group H is easy to construct, as is the group action on

degeneracy sets. Representative degeneracy sets can be found using a straightforward

orbit calculation which is available in GAP by using the command

Orbits(H, Eτ , OnDegeneracySets)

where H and Eτ are the appropriate GAP objects and OnDegeneracySets implements

the action of H on degeneracy sets. This gives us a list of orbits and we choose one

representative degeneracy set from each orbit. However, the collection of all degeneracy

sets is large which makes such calculations very expensive. In Chapter 6 we discuss a

method that determines representative degeneracy sets faster than the standard orbit

calculation and requires much less memory. For now we assume we can obtain the

representative degeneracy sets with no assumptions on the efficiency.



Chapter 5

Number of conjugacy classes

with a given degeneracy set

We turn now to our final task: determine the number of conjugacy classes in GL(r, s; p)

of a given type τ and degeneracy S. A conjugacy class with degeneracy S is given by a

specialization taking x1, . . . , xw in the types context to finite field elements β1, . . . , βw,

satisfying the restrictions dictated by S. Therefore our task is to count specializations

satisfying the restrictions for a given degeneracy set S.

We must remember that in the current framework we do not distinguish two distinct

specializations that yield the same conjugacy class. For example, if we have two iden-

tical type-parameters y and y′ (both equal to (d, λ, l)), and a specialization chooses

a value of β for y and a value of β′ for y′, then there is an equivalent specializa-

tion where the choices are swapped. This yields precisely the same conjugacy class.

This is a continuation of the phenomena of equivalent degeneracy sets as described in

Section 4.6. The root cause of this problem is in the arbitrary order we impose on our

type-parameters, and the order of terms xi inside tuples in the master predegeneracy

set and master degeneracy set which follow from the type-parameter ordering. It is

computationally convenient to impose this order and we can easily accommodate it by

defining an equivalence of specializations.

Simply stated, two specializations are equivalent if they produce the same conjugacy
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class. This can also be described using the group H which defines the equivalence classes

of degeneracy sets, as per the previous chapter. Recall that an element h ∈ H can be

uniquely decomposed into a permutation π acting on indices and a power of the Galois

action σj . The element h acts on elements of the degeneracy set, but can also act on

finite field elements, and furthermore, on specializations into finite fields. Suppose we

have a specialization φ taking xi to βi for i = 1, . . . , w. Then the image of βi under the

action of h is βσj

(i)π. This action is extended to the specialization φ by defining

h · φ(xi) = βσj

(i)π where h = (π, σj) ∈ H.

A specialization φ with degeneracy set S is equivalent to a specialization φ′ with degen-

eracy set S′ if there is an element h ∈ H such that h · S = S′ and for all i = 1, . . . , w,

the image h · φ(xi) = φ′(xi). This is easily shown to be an equivalence class.

Equivalent specializations correspond to the same conjugacy class. To count the

correct number of distinct specializations we will first choose a representative degener-

acy set S, and count all specializations with that degeneracy set. Two specializations

φ and φ′ both with degeneracy set S are equivalent if h ·S = S and for all i = 1, . . . , w,

the image h · φ(xi) = φ′(xi). Conversely, the number of equivalent specializations with

degeneracy set S is the size of the stabilizer H0 ≤ H of the degeneracy set S. There-

fore the number of distinct specializations with degeneracy set S is the total number

of specializations with degeneracy set S divided by the order of H0.

Let p be variable and d be the least common multiple of the degrees of the type-

parameters. Our focus now is to compute the total number of specializations with

degeneracy set S mapping into Fpd for a given type τ . One of the major results in

Higman [21] is that this number is given by a PORC function in p. This function

is denoted d(S, τ ; p). Throughout this chapter we assume τ is fixed and assume the

function d(S, τ ; p) is always in terms of a variable prime p, so for brevity we denote it

as d(S). This matches Higman’s notation.

Recall that a degeneracy set S and the type τ specify a list of equations and inequal-
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ities that the image of all specializations counted by d(S) must obey. In a situation

where we want to count objects specified by a list of properties that must hold and a

list of properties that must not hold, a common method is the Principle of Inclusion-

Exclusion. This is a well-known sieve method. A thorough treatment can be found

in Volume I, Chapter 2 of [49]. For our situation the Principle of Inclusion-Exclusion

states that

d(S) = d(S, τ ; p) =
1
|H0|

∑

T⊇S

(−1)|T−S|c(T ), (5.1)

where the sum is over all degeneracy sets T containing S, and c(T ) is the number of

specializations satisfying just the equations specified by the degeneracy set T . Higman

[21] proved that c(T ) is a PORC function in p, and thus so is d(S). The rest of this

chapter will focus on computing the function c(T ) for all degeneracy sets T . Note

that the factor of |H0|−1 is present to deal with equivalent specializations producing

the same conjugacy class so that d(S) is correctly interpreted to be the number of

conjugacy classes in GL(r, s; p) with degeneracy set S. This factor is not a component

of the Principle of Inclusion-Exclusion.

Before we show how we compute c(S), we need to take note of some issues regarding

PORC functions and the Principle of Inclusion-Exclusion. Higman’s proof states that

both c(S) and d(S) are PORC functions in the sense that Higman defines it: there is

an integer N such that for each residue class of p modulo N , there is a polynomial

in p associated to this residue class, and the collection of these polynomials is called

a PORC function. As we will see, the explicit calculations indicate that we have a

stronger form of PORC functions. The function c(S) is given as a product of terms

a(p) ·b(p) where a(p) is a product of terms of the form gcd(k, f(p)) where k is a positive

integer, and f(p) and b(p) are polynomials in p with integer coefficients. That is, the

integers k inside the gcds specify N in Higman’s form of PORC functions, and the

product of the gcd functions themselves are constant for all primes in the same residue

class. Thus for each residue class of p modulo N there is an associated polynomial,

and so we can see our form is captured by Higman’s definition of a PORC function. In
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this chapter, “PORC function” will always refer to the stronger form. The term a(p)

will be sometimes called the periodic or gcd part of c(S), and b(p) will be called the

polynomial part .

Also note that if we have a degeneracy set S, then using Equation (5.1) to calculate

d(S) requires us to consider 2N sets, where N = |Eτ | − |S|. If N is large, then the

inclusion-exclusion calculation will be computationally expensive. We will provide a

more efficient manner of calculating inclusion-exclusion in Chapter 6, but for now we

assume we calculate d(S) in the form dictated by Equation (5.1).

5.1 Calculating c(S)

Higman proved in his second paper [21] that c(S) is a PORC function. His approach

is to restate the problem of counting specializations satisfying certain equalities as a

problem in homological algebra. The methods described in this chapter are original,

but are strongly influenced by Higman’s proof. That is, we will use the same approach

using homological algebra but will provide explicit calculations for each component of

Higman’s proof.

Our goal is to count the number c(S) of specializations into Fpd restricted by

equations implied by the degeneracy set S. Recall that a specialization φ is a

homomorphism taking elements x1, . . . , xw to Fpd , where

φ(στ · xi) = σ · φ(xi). (5.2)

That is, it respects the Galois action on both C and Fpd .

To effectively calculate with the two components x1, . . . , xw and Fpd , we need a

single context for them. The context proposed by Higman is that of a Λ-module, where

Λ is the ring

Λ =
Z[σ]

(σd − 1)
,

and d is the least common multiple of the degrees of the type-parameters. Although it
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is an abuse of notation, we use the symbol σ here as it will play the role of σ over Fpd

and στ over x1, . . . , xw when we bring both into the context of Λ-modules. For the rest

of this chapter, σ refers to the indeterminate in Λ.

It is easy to bring Fpd into this context. The equations restricting the specializations

into Fpd are all of the form

βu1
1 · · ·βuw

w = 1.

Here β1, . . . , βw are elements in the multiplicative group of Fpd and we only require them

in this multiplicative role. The multiplicative group of Fpd is cyclic of order pd − 1, so

β1, . . . , βw are elements of this cyclic group. The Galois action σ acts as an automor-

phism of this group, and this automorphism has order d. Using this information, we

represent the multiplicative group of Fpd as the additive group of the parametrised ring

Mp

Mp :=
Z[σ]

(σd − 1, σ − p)
.

The additive group of Mp is a Λ-module where the action of an element from Λ is just

multiplication within Z[σ] with the appropriate reduction. The additive group of Mp

is cyclic of order pd − 1, which is isomorphic to the multiplicative group of Fpd . The

action of σ from Λ is the same as the Galois action σ of Fpd over Fp.

We turn now to the elements x1, . . . , xw. These elements have “conjugates” given

by the automorphism στ . For a type τ given by type-parameters (di, λi, li), we have a

set xσj

i for i = 1, . . . , w and j = 0, . . . , di − 1. Recall that an element (u1, . . . , uw) ∈ S

represents an element

xu1
1 · · ·xuw

w ∈ C.

We only need the elements x1, . . . , xw and their στ -conjugates in their multiplicative

role in C. Recall that there are no restrictions on these elements. Then we can think

of the elements xσj

i as generators of a finitely-generated free abelian group F . To

emphasise the abelian group context, we write additively, so

xu1
1 · · ·xuw

w is written as u1x1 + · · ·+ uwxw.
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The group F is a Λ-module where the action of Z is just the standard action on

abelian groups, and σ ∈ Λ acts as στ , taking (σjxi) to (σj+1xi) (where we reduce using

σdixi = xi if need be). We impose the restrictions in the degeneracy set S by imposing

the relations

u1x1 + · · ·+ uwxw = 0 for (u1, . . . , uw) ∈ S.

That is, we form the group X which is F modulo the group generated by the words

u1x1 + · · ·+ uwxw for (u1, . . . , uw) ∈ S. The group X is a finitely-generated Λ-module,

where σ ∈ Λ acts as στ on generators (σjxi) for i = 1, . . . , w and j = 0, . . . , di − 1.

Now we can complete the last step in our restatement in terms of homological

algebra: a specialization with degeneracy set S is a Λ-module homomorphism

φ : X → Mp. The restrictions on the choices of β1, . . . , βw ∈ Fpd are imposed

in X instead of Fpd and are brought across by the homomorphism. The number of

specializations with degeneracy set S is

c(S) = |HomΛ(X,Mp)|,

and we wish to find |HomΛ(X, Mp)| as a function of p. An important component of

Higman’s proof [21] is that |HomΛ(X, Mp)| factorises in a useful way:

|HomΛ(X,Mp)| = |HomΛ(Tor(X),Mp)| · |HomΛ(X/Tor(X), Mp)|, (5.3)

where Tor(X) is the torsion submodule of X, namely the set of elements x ∈ X for

which there exists a nonzero integer m such that m ·x = 0. We call the quotient module

X/Tor(X) the torsionfree quotient module. The first term in the right-hand side of

Equation (5.3) provides the periodic (gcd) part of our PORC function, and the second

term provides the polynomial part. We are able to calculate these two parts indepen-

dently, and indeed, they require different algorithms. The remainder of this chapter is

devoted to describing them. The algorithm to compute |HomΛ(Tor(X),Mp)| will be

called the torsion calculation, and the algorithm to compute |HomΛ(X/Tor(X),Mp)|



5.2. TORSION CALCULATION 63

will be called the torsionfree calculation.

Since we primarily deal with Λ-module homomorphisms we will often just write

HomΛ(A,B) as Hom(A,B), and explicitly indicate when we are working with any

other kind of module homomorphism.

5.2 Torsion calculation

In his paper [21], Higman proves that if p ≡ q modulo m, then

|HomΛ(Tor(X), Mp)| = |HomΛ(Tor(X),Mq)|.

In other words, |Hom(Tor(X),Mp)| is periodic with period m. This suffices for Higman’s

purposes but we need to find this function explicitly.

An element of X is in Tor(X) solely because of the Z-module action on X. The

structure of finitely-generated Z-modules is well-known, and we assume the reader is

familiar with the relevant theory, especially with the theory of normal forms (Hermite

and Smith normal forms) over the integers. We will use [24] as our primary reference

for this theory; it is contained in Section 9.2 of [24]. Chapters 8 and 10 of Sims [48]

also contain details on this theory.

Given a finite presentation of X, we can determine the Z-module structure of X,

and in particular, of Tor(X). Every torsion Z-module decomposes into a direct sum of

finitely many finite cyclic Z-modules. As a Z-module,

Tor(X) ∼=
⊕

i

Zsi

where there are finitely many summands Zsi , which are the additive groups Z modulo

si.

We want to know the Λ-module structure of Tor(X). This is essentially the Z-module

structure except that the Z-module generators may be redundant under the action of

σ ∈ Λ. For example, suppose X is generated by two elements x1 and (σx1), and has the
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single Λ-module relation 2 · x1 = 0 from the degeneracy set S. Of course this includes

the equivalent Λ-module relation 2 · (σx1) = 0. If we consider X as a Λ-module, then

σx1 is generated by x1 via the action of σ ∈ Λ. Therefore X is a cyclic Λ-module,

and its generator has torsion 2. As a Z-module, the generators x1 and σx1 are inde-

pendent, and X is isomorphic to the Z-module Z2 ⊕ Z2. The difference is important

because any homomorphism from X to Mp depends only on the image of generators

of X. The number of Λ-module homomorphisms in this case is gcd(2, p2 − 1) but the

number of Z-module homomorphisms is gcd(2, p2 − 1)2. Nevertheless, the structure of

Tor(X) as a Z-module can tell us the structure of Tor(X) as a Λ-module if we correctly

incorporate the action of σ ∈ Λ. This is the main idea of the torsion calculation: treat

X as a Z-module for calculating the main data relevant to torsion, and modify this

information in light of the action of σ ∈ Λ.

Our first step is to determine an appropriate counting formula for the number of

Λ-module homomorphisms from Tor(X) to Mp, assuming we know generators of Tor(X)

and certain additional information. Recall that as a Z-module,

Tor(X) ∼=
k⊕

i=1

Zsi

where the summands Zsi are the additive groups Zmodulo si. In other words, Tor(X) is

generated by k elements g1, . . . gk with si ·gi = 0 for i = 1, . . . , k, and gi are independent

under the Z-action.

By a well-known result in homological algebra (see, for example, [22], or [31], page

192)

|HomΛ(
⊕

i

Zsi ,Mp)| =
∏

i

|HomΛ(Zsi ,Mp)|.

Therefore it suffices to find |HomΛ(Zsi , Mp)| for Λ-module Zsi . Note that Mp is

isomorphic (as a Z-module) to Zpd−1. It is also well-known [16] that

|HomZ(Zm,Zn)| = gcd(m,n), (5.4)
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where HomZ(Zm,Zn) is the group of Z-module homomorphisms, that is, the group-

homomorphisms from Zm to Zn.

We can utilize the proof of this last result to prove a similar one for Λ-modules.

Theorem 5.1. Let A be a finite, cyclic Λ-module generated by g, and suppose there is

a least nonzero m such that m · g = 0 and a polynomial f(σ) of least degree such that

f(σ) divides σd − 1, and f(σ) · g = 0. Then the number of Λ-module homomorphisms

from A to Mp is

|HomΛ(A,Mp)| = gcd(m, f(p)).

Proof. Let ψ ∈ HomΛ(A, Mp). Since both A and Mp are cyclic Λ-modules, it is

necessary and sufficient to determine ψ by specifying ψ(g). Note that since m · g = 0

and f(σ) · g = 0, then m · ψ(g) = 0 and f(σ) · ψ(g) = f(p) · ψ(g) = 0. That is, ψ(g)

has order dividing gcd(m, f(p)). Suppose the order of ψ(g) is k and note that k divides

pd − 1 since f(p) does. Then ψ(g) generates a submodule B of order k. Since Mp is

cyclic, B is unique. The choice of ψ(g) was one of ϕ(k) generators of B, where ϕ(k) is

the Euler phi function. Therefore the total number of choices for ψ(g) is

∑

k|gcd(m,f(p))

ϕ(k).

It is well-known in number theory that this sum is equal to gcd(m, f(p)) (see [3],

page 26). Therefore the number of Λ-module homomorphisms from A to Mp is

gcd(m, f(p)).

Combining the above results we see that

|HomΛ(Tor(X),Mp)| =
∏

i

|HomΛ(Ai,Mp)| =
∏

i

gcd(mi, fi(p)), (5.5)

where Ai is a cyclic torsion Λ-submodule of Tor(X) generated by gi, and mi is the

least positive integer such that mi · gi = 0 and fi(σ) is the nonconstant polynomial

of least degree such that fi(σ) · gi = 0 and f(σ) | σd − 1. It follows that once we

decompose Tor(X) into cyclic submodules, and determine properties of generators of
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such submodules, then this completes the torsion calculation. The rest of this section

is devoted to finding generators gi and their associated mi and fi(σ).

There are four main steps to finding this information:

1. Turn the Λ-module presentation of X into a Z-module presentation;

2. Find generators of the Z-module Tor(X) and their associated torsion via a normal

form algorithm;

3. Find an irredundant list of Λ-module generators gi from the Z-module generators;

4. Determine the polynomials fi(σ) for each generator gi.

As mentioned before, the general approach is to work in the context of finite abelian

groups (that is, Z-modules) and modify the results to accommodate the Λ-module

structure.

5.2.1 Changing presentations

Treating X as a Z-module for the purpose of calculating torsion requires turning the

Λ-module presentation for X into a Z-module presentation. We do this by closing the

Λ-module relations under the action of σ.

Take the example we used before: X is generated by x1, where σ · x1 = (σx1),

with the single Λ-module relation 2x1 = 0. There is an equivalent Λ-module relation

2(σx1) = 0. The second relation is in the closure of the first under σ ∈ Λ. To interpret

X as a Z-module we “forget” that the generators and the relations are related by the

action of σ ∈ Λ.

To translate the Λ-module relations into Z-module relations, we follow the general

idea of acting on the relations by σ ∈ Λ and reducing the relations under the action

of Z. We keep repeating this process until the action of σ ∈ Λ on every relation is

contained in the Z-span of the current set of relations. This follows a similar procedure

to ZXMODULE on page 459 of Sims’ book [48].

In our case, we have a set of free generators (σjxi) generating F , and a set of

relations on F that define the group X. Our algorithm reduces this presentation to
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another set of generators and relations on F , and these generators form a Z-basis for

the same module X. Our procedure is similar to Sims’ ZXMODULE, the difference

being that σ ∈ Λ has a prescribed relation σd − 1 = 0 which we use.

A relation from S is of the form

w∑

i=1

di∑

j=0

uij(σjxi) = 0.

This can be represented by a row-vector of length equal to the sum of the degrees di

for type-parameters (di, λi, li). The relations in S therefore can be represented by a

matrix U where the rows are the vectors representing each relation from S.

If we write the relations from S in matrix form, then the action of σ ∈ Λ can be

represented by a matrix Mτ acting on the right. The matrix Mτ just permutes the

entries of a row-vector in the same way σ ∈ Λ permutes the generators σjxi. This

matrix depends only on the type, which we emphasise by using the index τ .

The procedure to write the Λ-module presentation of X as a Z-module presentation

is as follows:

1. Write the equations from the degeneracy set S in terms of the generators (σjxi)

store them in a matrix U ;

2. Act on this set by the matrix Mτ , and append this set of relations to our matrix

U as additional rows;

3. Find a minimal Z-basis of the row-space of U via the Hermite normal form of U ;

4. Repeat until U is invariant under the steps 1-3.

For algorithmic purposes we consider the Hermite normal form of a matrix to be equiv-

alent to the same form with any number of rows of zeroes. That is, we remove rows of

zeroes throughout this procedure.

We will call the resulting matrix the σ-Hermite normal form of U (or σHNF(U))

as it σ-closes the Hermite normal form.
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Algorithm 5.1 σ-close relations on Λ-module X

Require: Relations of X in a matrix U , and a matrix Mτ representing the σ-action
on the relation vectors.

1: repeat
2: Set A := U
3: Set d > 0 such that Md

τ = 1.
4: for 1 ≤ i ≤ d− 1 do
5: Append to U the rows of the matrix U ·M i.
6: od
7: Set U := HermiteNormalForm(A).
8: Remove all rows of zeroes from U .
9: until U = A.

10: return σ-closed Z-module relations U .

5.2.2 Determining Z-module generators of Tor(X)

Having expressed Tor(X) as a Z-module, we now use established results to find the

decomposition of Tor(X) into finite cyclic Z-submodules. For this we use the Smith

normal form (see Section 9.2.4 of [24], or Section 8.3 of [48]). A m×n matrix A defined

over Z is in Smith normal form if the following conditions hold:

1. Aij = 0 if i 6= j;

2. Aii = di ≥ 0 for i = 1, . . . ,min(m,n);

3. di | di+1 for i = 1, . . . ,min(m,n)− 1.

A Smith normal form algorithm is an algorithm that takes an arbitrary matrix A defined

over the integers, performs integer row and column operations on A and returns a matrix

in Smith normal form that is equivalent to A. That is, it finds invertible matrices R and

C such that RAC is a matrix in Smith normal form. There are many different imple-

mentations for this procedure each designed to handle certain performance problems.

We do not require any particular implementation; the one provided in GAP is sufficient.

An m× n matrix in Smith normal form, where rows of zeroes are removed, can be

given by the list of nonzero diagonal entries {d1, . . . , dr}. The Z-module associated to

this Smith normal form is

Zd1 ⊕ · · · ⊕ Zdr ⊕ Zn−r.
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Therefore the torsion submodule of this matrix is just

Zd1 ⊕ · · · ⊕ Zdr .

The standard treatment of Smith normal forms requires that di | di+1 so that this

decomposition is unique. We won’t insist on this requirement as we will be undoing

this work anyway. As an example, suppose we reduce our Z-module relations for Tor(X)

via the Smith normal form, obtaining a list of diagonal entries {1, 2, 6}. As a Λ-module,

this could correspond to a situation where we have three Λ-module generators g1, g2, g3

where 1 ·g1 = 0, 2 ·g2 = 0 and 6 ·g3 = 0. Alternatively, the relations could be 2 ·g1 = 0,

2 · g2 = 0 and 3 · g3 = 0. Moreover, the Λ-module could be generated by g1, σg1 and

g2 where the Λ-module relations are 2 · g1 = 0 and 3 · g2 = 0. These three situations

are quite different in light of our counting theorem given by Equation (5.5). In general,

a single list {d1, . . . , dr} could correspond to several different Λ-modules. The next

section shows how to differentiate them.

In preparation for this, we need to ensure that the algorithm that computes the

Smith normal form of our matrix also provides us with the matrices R and C (such

that RAC is in Smith normal form). We actually only require their inverses for reasons

explained in the next section. The matrix R−1 will be called the row transformation

matrix and C−1 will be called the column transformation matrix . These matrices

reverse the integer row- and column-transformations respectively, taking the matrix

back to its Smith normal form.

To complete this stage of the algorithm we need to find the Smith normal form of

the σ-Hermite normal form of the matrix U created from the degeneracy set S. From

this we obtain a matrix U ′, as well as the row and column transformation matrices

R and C. This describes the decomposition of Tor(X) as a Z-module and how we

obtained it.
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5.2.3 Determining Λ-module generators of Tor(X)

At this point we have a matrix U ′ which is the Smith normal form of the σHNF of the

matrix U , and the matrices R and C. These matrices satisfy the equation RUC = U ′,

or equivalently U = R−1U ′C−1. The matrix U ′ is in Smith normal form, so it looks

like 


d1 0 . . .

0 d2 0
. . . 0

0 dr




The matrix U ′ gives a presentation of Tor(X) in terms of Z-module generators g′i and

relations given by the matrix U ′. From the rows of U ′ we know that g′i has torsion

di. The generators g′i form a Z-basis for Tor(X) in the presentation given by U ′.

Suppose that the presentation given by σHNF(U) has generators gi. If we determine

what elements in the original basis gi correspond to g′i (by using the matrices R−1 and

C−1), then we have a Z-basis for Tor(X) in terms of these original generators. We

know how to act on generators gi by σ ∈ Λ because they are in terms of the original

basis. That is, σ acts on the elements gi, expressed as vectors, by the matrix M . We

can then determine which g′i are equivalent under the action of Λ via the σ-Hermite

normal form. The set of nonequivalent g′i are a minimal Λ-basis for Tor(X). Since we

know their torsion from the presentation U ′ and can determine the polynomials fi(σ)

such that fi(σ) · gi = 0, we have all we need to determine the number of Λ-module

homomorphisms from Tor(X) to Mp. We take this general approach.

This method hinges on the fact that a row-vector can represent a relation

w∑

i=1

di∑

j=0

uij(σjxi) = 0,

in a certain presentation but also represent an element in terms of the same presentation

(in this case, this element is just the left-hand side of the above equation). Thus the
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row-vector

(0, . . . , 0, 1, 0, . . . , 0),

where 1 is in the ith position and there are zeroes elsewhere, corresponds to the ith

generator in the particular presentation we are using. Invertible matrix transformations

acting on row-vectors restate an element given in terms of one presentation in terms of

another presentation.

In particular, we can represent the generator g′i in the presentation given by U ′ by

a matrix Qi where the ith element on the diagonal is 1 and zeroes elsewhere. The

matrix Pi := R−1GiC
−1 specifies g′i in terms of the original generators gi. We can

now determine whether the generator g′j is in the span of another generator g′i by

determining if the relations of g′j (that is, the matrix Pj) is in the Λ-module span of

those of g′i (that is, the matrix Pi). See page 74 of [9] for a proof of this. To compute

this, we append the rows of Pj to Pi and compute the σHNF of the resulting matrix.

If this matrix is equal to the σHNF of Pi, then g′j is in the Λ-module span of g′i.

The next question is which sets of generators do we choose? Suppose generator g′i

has torsion di, and g′j has torsion dj , where i < j. Then by the Smith normal form,

di | dj . Therefore it is possible that g′i is generated g′j since its torsion divides the

torsion of g′j . If we used a normal form algorithm that didn’t insist on the uniqueness

of the decomposition of Z-modules, then this would reduce the search. We can use a

similar reduction, using the polynomials fi(σ) which have yet to be computed. Once

we do, we only need to check pairs (i, j) such that fi(σ) | fj(σ). For i < j, if g′i and g′j

are such that fi(σ) - fj(σ) then this would imply that the gcd of fi(σ) and fj(σ) was

the real minimal polynomial for g′i. But then 1 · g′i = 0, which is absurd. Therefore this

is a necessary condition for two pairs to be redundant. The actual test is done by the

σ-Hermite normal form calculation.

The process to find fi(σ) is straightforward. If we had the polynomial fi(σ) then

we would show that it is the minimal polynomial for g′i via matrices by substituting

the matrix Mτ (signifying the action of σ ∈ Λ) into the polynomial fi, and then act

fi(Mτ ) on Pi, the matrix representing g′i in terms of the original generators of X. If
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the resulting matrix is zero, then fi(σ) · g′i = 0

Since (σd − 1) · u = 0 for all u in a Λ-module, the minimal polynomial fi(σ) must

divide σd−1. Therefore we can find fi(σ) by creating the list of divisors δ(σ) of σd−1,

sorting them in order of increasing degree, and in order, test each divisor if it satisfies

δ(Mτ ) · Pi = 0. The first δ(σ) to satisfy this equation is the minimal polynomial fi(σ).

We can speed this process up a little. The irreducible polynomials dividing σd−1 are

called the cyclotomic polynomials (over Q). The cyclotomic polynomials are ordered.

The ith cyclotomic polynomial is denoted Φi(σ). It is well-known (see Theorem 2.45

on page 64 of [29]) that

σd − 1 =
∏

i|d
Φi(σ). (5.6)

Since the cyclotomic polynomials are irreducible, it follows that any divisor of σd− 1 is

a product of cyclotomic polynomials Φi(σ) where i divides d, and any such cyclotomic

polynomial Φi(σ) occurs at most once. There are algorithms for computing Φi(σ) (in

GAP this is done using CyclotomicPolynomial(Rationals, i)). We can precompute

these polynomials, and since d is fixed for a type, we can precompute all possible fi(σ).

While this does not lead to a massive speedup, it minimises the time that the

program needs to compute this data (which is often dominated by the computer de-

termining which indeterminate is involved in a given polynomial). This optimization

is included in the implementation. One of the main reasons for this detour is that we

will require cyclotomic polynomials in the next section, and it is convenient to define

them now.

Combining all the above procedures, given the presentation of X via the degeneracy

set we can determine a list of generators g′i that are independent over Λ and we know

di and fi(σ) for each generator so that

|Hom(Tor(X),Mp)| =
∏

i

gcd(di, fi(p)).

This completes the torsion calculation.
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5.3 Torsionfree calculation

The torsionfree calculation involves finding

|HomΛ(X/Tor(X),Mp)|

as a polynomial in p. The Λ-module X/Tor(X) is torsionfree, that is, for all nonzero

elements u in X/Tor(X), the only integer m such that mu = 0 is m = 0.

For convenience, we denote X/Tor(X) as X∗. Since X∗ is torsionfree, it is naturally

embedded in the tensor product X∗⊗Q. Similarly, Λ is naturally embedded in Λ⊗Q.

Thus it does no harm to reformulate our problem in terms of these two tensor products.

In practice, we redefine Λ as
Q[σ]

〈σd − 1〉

and consider the relations of X to have coefficients in Q rather than Z. Doing this

simplifies our approach.

We will use the two following results from Higman, which correspond to Lemma

2.1.7 and 2.1.8 in [21].

Theorem 5.2. If X∗ is a finitely-generated torsionfree Λ-module then

|HomΛ(X∗,Mp)| = |b(p)|,

where b(x) is a polynomial such that every irreducible factor of b(x) divides xd − 1.

That is, b(x) is a product of cyclotomic polynomials Φi(x) where i divides d.

Theorem 5.3. Suppose we have a Λ-module A = Q[σ]/〈g(σ)〉, where the polynomial

g(x) divides xd − 1. Then

|HomΛ(A,Mp)| = |g(p)|.

These two results suggest that if we can decompose X∗ into modules of the form

A = Q[σ]/〈g(σ)〉 where the polynomials g(σ) are cyclotomic polynomials, then we can

easily compute |Hom(X∗,Mp)|. Our approach does just that.
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Consider the ring Λ = Q[σ]/〈σd − 1〉. Every Λ-module is a quotient of Λk for

some k. Now consider the principal ideals generated by the cyclotomic polynomials

Φi(σ) for i | d. Since the cyclotomic polynomials are irreducible, the principal ideals

(Φi(σ)) and (Φj(σ)) are coprime for i 6= j. By the Chinese remainder theorem [6] and

Equation (5.6) we know that

Λ =
Q[σ]

〈σd − 1〉
∼=

⊕

i|d

Q[σ]
〈Φi(σ)〉 . (5.7)

So X∗ = Λw/〈S〉 where 〈S〉 is the ideal of elements given by the degeneracy set S. The

above decomposition says that we can decompose the ideal 〈S〉 into a direct product

of ideals over Q[σ]/〈Φi(σ)〉 for i | d.

Take for example d = 2 so that Λ = Q[σ]/〈σ2−1〉. The polynomial σ2−1 factorises

into cyclotomic polynomials Φ1(σ) = (σ − 1) and Φ2(σ) = (σ + 1). Thus

Q[σ]
〈σ2 − 1〉

∼= Q[σ]
〈σ − 1〉 ⊕

Q[σ]
〈σ + 1〉

We can frame this for single elements in terms of Λ:

a + bσ + 〈σ2 − 1〉 ≡ (A + 〈σ − 1〉) + (B + 〈σ + 1〉)

for a, b, A, B ∈ Q. Note that the element on the left-hand side is one annihilated by

σ2 − 1, the element A + 〈σ − 1〉 is an element annihilated by σ − 1 and therefore is

equivalent to A(σ + 1). Similarly, B + 〈σ + 1〉 is annihilated by σ + 1 and therefore is

equivalent to B(σ − 1). We can therefore restate the equivalence as

a + bσ ≡ A(σ + 1) + B(σ − 1).

This gives us a relation between a and b, and A and B.

Now assume that X∗ is generated (in terms of Λ) by a single element x1 and that it

has relation x1 +σx1 = (1+σ)x1 = 0. We want to decompose the ideal 〈1+σ〉 ∈ Λ into



5.3. TORSIONFREE CALCULATION 75

ideals related to the cyclotomic polynomials. That is, we want to determine rationals

A and B such that

1 + σ ≡ A(σ + 1) + B(σ − 1).

This is trivially solved by A = 1 and B = 0. Therefore

X∗ =
Λ

〈1 + σ〉
∼= Q[σ]
〈1, σ − 1〉 ⊕

Q[σ]
〈0, σ + 1〉

∼= Q[σ]
〈σ + 1〉 .

Then by Theorem 5.3 the number of homomorphisms from X∗ to Mp is p + 1. This

approach is how our algorithm for the torsionfree part works for a single generator,

single relation case. We will build up to the most general case (and the general algo-

rithm) in steps.

Note that in the previous example, the two-dimensional module Λ decomposed into

two one-dimensional submodules. In general, the module Q[σ]/〈σd−1〉 does not always

decompose into one-dimensional submodules, but into modules of dimension φ(i) for

i | d and where φ(i) is the Euler phi function. This is because Φi(σ) has degree φ(i) (see

[29], page 64), and therefore Q[σ]/〈Φi(σ)〉 has dimension φ(i). For example, suppose

Λ = Q[σ]/〈σ3 − 1〉. An element in Λ has decomposition

a + bσ + cσ2 + 〈σ3 − 1〉 ≡ (A + 〈σ − 1〉) + (B + Cσ + 〈σ2 + σ + 1〉).

Thus the three-dimensional space Λ decomposes into a one-dimensional space and a

two-dimensional space. In the two-dimensional space, an element B +Cσ+ 〈σ2 +σ+1〉
produces another element under the action of σ. We must be careful though — in this

space, σ has the relation σ2 + σ + 1 = 0, not just σ3 − 1 = 0. Therefore

σ · (B + Cσ + 〈σ2 + σ + 1〉) = Bσ + Cσ2 + 〈σ2 + σ + 1〉

= Bσ + C(−σ − 1) + 〈σ2 + σ + 1〉

= −C + (B − C)σ + 〈σ2 + σ + 1〉.
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The number of homomorphisms from the two-dimensional subspace to Mp depends on

whether B + Cσ and σ · (B + Cσ) generate this two-dimensional subspace. If they

do, then 〈B + Cσ, σ · (B + Cσ), σ2 + σ + 1〉 = 〈1〉 as an ideal in Λ and there will

be only one homomorphism corresponding to this submodule. In general, suppose we

have a component corresponding to Φi(σ). An element in the corresponding submodule

defines a vector V of length φ(i). The action of σ particular to this submodule defines

φ(i)− 1 other vectors σ · V , σ2 · V , . . . . Let M be the matrix whose rows are given by

the vectors V , σ · V , . . . . The nullity of M is the number of columns of M minus the

rank of M . The relation given by V contributes Φi(p)k to |Hom(X∗,Mp)| if the nullity

divided by φ(i) is k. We divide by φ(i) because computing the rank is done over Q, not

Q[σ]/〈Φi(σ)〉 (a φ(i)-dimensional vector space over Q corresponds to a 1-dimensional

vector space over Q[σ]/〈Φi(σ)〉).
Now let X∗ be generated by two elements x1 and x2, where σ acts trivially (that

is, x1 and x2 correspond to type-parameters of degree 1). Therefore X∗ is a quotient

Λ-module of Λ2. The relations on x1 and x2 are of the form ax1 + bx2 = 0 for some

a, b ∈ Z. Suppose X∗ has a single relation. It can be one of four kinds:

• a = b = 0. Then X∗ ∼= Q[σ]/〈σ − 1〉 ⊕Q[σ]/〈σ − 1〉;

• a = 0 and b 6= 0. Then X∗ ∼= Q[σ]/〈σ − 1〉;

• a 6= 0 and b = 0. Then X∗ ∼= Q[σ]/〈σ − 1〉;

• a 6= 0, and b 6= 0. Then X∗ ∼= Q[σ]/〈σ − 1〉 which is some diagonal product of

the two submodules isomorphic to Q[σ]/〈σ − 1〉.

These are all variants on the nullity approach: for each relation ax1 + bx2 = 0 form

the vector (a, b), and compute the nullity of this as a matrix. The nullity, denoted

nullity(A), of this matrix indicates that |Hom(X∗,Mp)| = (p − 1)nullity(A). If X∗ has

more than one relation, then the matrix we calculate nullity for has as many rows as

there are relations.

We now consider the most general case, where X∗ has w generators of possibly

different degrees. Then X∗ is a quotient Λ-module of Λw. The module Λ decomposes
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into a direct sum

Λ ∼=
⊕

i|d

Q[σ]
〈Φi(σ)〉 .

Note that submodules Q[σ]/〈Φi(σ)〉 and Q[σ]/〈Φj(σ)〉 intersect trivially for i 6= j as

Φi(σ) and Φj(σ) are irreducible and coprime. This applies for the same modules but

across different copies of Λ. Therefore the parts of relations corresponding to the

module Q[σ]/〈Φi(σ)〉 have nothing to do with the parts of relations corresponding to

the module Q[σ]/〈Φj(σ)〉 as far as the torsionfree calculation is concerned. Therefore

we consider each cyclotomic polynomial separately.

The procedure for our torsionfree calculation is as follows:

• For each cyclotomic Φi(σ) dividing σd − 1:

1. Take each generator xj corresponding to a type-parameter of degree divisible

by i, and for each relation on X∗, extract the part of the coefficient of xj

corresponding to the submodule Q[σ]/〈Φi(σ)〉 and store it in a vector;

2. For each such generator in a single relation, form a row vector V by

concatenating all the vectors;

3. Form the matrix M where the rows are the vectors V from the previous

step;

4. Compute the nullity Ni of M ;

5. Then |Hom(X∗,Mp)| has a factor Φi(p)Ni/φ(i).

• The product of factors Φi(p)Ni gives |Hom(X∗,Mp)|, thus completing the

torsionfree calculation.

The only remaining part of this process is how to algorithmically split a coefficient

of xj in a relation into parts corresponding to the different cyclotomic polynomials. For

this we develop the concept of a splitter matrix . By Equation (5.7), an element in Λ

decomposes as




d−1∑

j=0

ajσ
j


 + 〈σd − 1〉 ≡

∑

i|d




φ(i)−1∑

j=0

Ajσ
j


 + 〈Φi(σ)〉.
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Each term in the sum over i in the right-hand side is equivalent to a term annihilated

by the appropriate Φi(σ), and so this is equivalently stated as:




d−1∑

j=0

ajσ
j


 ≡

∑

i|d




φ(i)−1∑

j=0

Aijσ
j


 · σd − 1

Φi(σ)
. (5.8)

For a given i, we want to know how the vector (a1, . . . , ad−1) corresponds to the vector

(Ai0, . . . , Aiφ(i)−1) given the above equation. By the Chinese remainder theorem this

correspondence is unique. We can consider the correspondence over all i (for a single

coefficient of a generator in a relation) to take

a = (a1, . . . , ad−1) −→ A = (A10, . . . , Aij , . . . , Adφ(d)−1).

These are both row-vectors of length d− 1 (the latter vector because
∑

i|d φ(i) = d.) If

we consider them as column-vectors instead, then we can represent this transformation

by a matrix Q:

Q · a = A.

The matrix Q is called the splitter matrix as it “splits” the vector a into the vectors

(Ai1, . . . , Aiφ(i)−1). To construct Q, consider the correspondence from A to a given by

expanding out Equation (5.8) and comparing like terms. That is, a0 is the sum of the

constant terms in the right-hand side of Equation (5.8), a1 is the sum of the linear

terms, and so on. This correspondence is itself a matrix, where the first row is the

coefficients of (σd − 1)/Φ1(σ) in the standard order, the next row is the coefficients of

(σd − 1)/Φi(σ) for i the first nontrivial divisor of d. This is followed by φ(i)− 1 many

rows corresponding to the coefficients of σj · (σd−1)/Φi(σ), and so on. This matrix has

an inverse because the Chinese remainder theorem assures the isomorphism in Equation

(5.7). The inverse of this matrix is the splitter matrix . For a given d, the splitter matrix

is a d× d matrix, and depends only on d. Therefore for our torsionfree calculation we

precompute the splitter matrices of size di for each di in the type-parameters (di, λi, li)

of the given type.
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The entire torsionfree calculation is as follows:

1. Precompute splitter matrices of size di for all type-parameters (di, λi, li);

2. For each relation

u1x1 + · · ·+ uwxw = 0,

and each polynomial coefficient ui for generator xi, create the vector of coefficients

of ui and split it by multiplication by the appropriate splitter matrix;

3. Determine d, the least common multiple of the di in the type;

4. For each cyclotomic polynomial Φi(σ) for i dividing d:

(a) For each relation, collect the coefficients corresponding to Φi(σ) into a row-

vector and add it to the matrix M ;

(b) Close these rows of M by the action of σ satisfying Φi(σ) = 0 (the matrix

multiplication of direct sums of copies of the companion matrix of Φi(σ)

achieves this);

(c) Compute the nullity Ni (number of columns minus the rank) of the σ-closed

matrix M ;

(d) Return Φi(σ)Ni/φ(i);

5. Return the product of powers of cyclotomics from the previous step.

This completes the computation of c(S) for a given degeneracy set S, and thus by

inclusion-exclusion, d(S).



Chapter 6

Implementation

This chapter is devoted to aspects regarding implementation of the algorithm. If

implemented näıvely, the algorithm will be slow and will not take full advantage of

its redundant nature. A few main optimizations will be discussed, followed by a few

smaller implementation details.

The algorithm presented in this thesis has been implemented in GAP 4.4.7. There is

no compelling reason for this choice; it could be implemented just as easily in Magma,

or even in more traditional programming languages such as C++ with some extra work.

We will be focussing primarily on implementing algorithms to do particular tasks rather

than the structure of the data involved in the algorithm.

The two main algorithms that benefit from optimization are the algorithm to

generate the representative degeneracy sets, and the algorithm to compute inclusion-

exclusion, given that the functions c(S) have been precomputed. This is due to the fact

that if implemented näıvely they operate on a combinatorial explosion of sets, which

quickly puts a strain on memory and computational speed.

By their very nature, the degeneracy sets we deal with have a high degree of redun-

dancy due to the symmetry discussed in Section 4.6. This symmetry can be exploited

to reduce calculations to a more manageable set. Although the algorithm cannot avoid

a certain amount of combinatorial explosion (since we must examine every possible

conjugacy class structure provided), the methods outlined in this chapter go a long

80
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way towards making this as manageable and practical as possible.

6.1 Generating representative degeneracy sets

In Section 4.3 we encountered the master degeneracy set Eτ which represented the set

of all equations that we would deal with when examining fixed points for a particular

type and representation. A degeneracy set S was a particular choice of equations from

this set, represented by making S a subset of Eτ . We need to examine every conjugacy

class in this type, which meant looking at every degeneracy set. On the face of it, if

Eτ is a set of N elements, then we need to work with 2N degeneracy sets.

However, in Section 4.6 we noted that there is a high degree of redundancy in our

sets, due to the equivalence of type-parameters. The equivalence of type-parameters led

to an equivalence of degeneracy sets.This equivalence can be viewed as a group action on

degeneracy sets where the group involved is denoted H. The action of H induces orbits

of degeneracy sets and we choose one representative from each orbit to form our set of

representative degeneracy sets. The PORC function c(S) is the same for a equivalent

degeneracy sets. Furthermore, the number of fixed points is the same for equivalent

degeneracy sets. Therefore for each orbit representing a set of equivalent degeneracy

sets we need only compute one instance of c(S) and χ(gS). Therefore, if we can find this

set of representative degeneracy sets, then we can reduce the computational workload

significantly.

We can easily construct the group H, as detailed in Section 4.6. By Cayley’s theo-

rem, we can rewrite the action of H on the master degeneracy set Eτ as a permutation

group acting on {1, . . . , |Eτ |}. This is achieved in GAP via the Action command. The

permutation representation is much more concise, and it simplifies and speeds up group

action calculations. This step is not essential, but it helps. We now represent a degen-

eracy set S as a set of integers from {1, . . . , |Eτ |}. In an explicit form, S would be a set

of tuples of polynomials with integer coefficients, which is stored as a list of lists of lists

of integers (where the deepest list is the coefficient list of the appropriate polynomial).

In this permutation representation, a degeneracy set is just a list of integers which is
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undoubtedly easier to use and more memory efficient. Conversion back to the explicit

representation is easy: if the integer i is in S, replace it with the ith element of the

master degeneracy set Eτ .

We now have a more efficient representation of our data, so now we move onto the

algorithm to find the representatives of orbits of degeneracy sets under the action of H.

We still have a search space of 2N elements. The näıve algorithm would compute the

orbits of this domain and select representatives from each. Even with the more efficient

representation, we would still need to firstly generate all 2N elements, and then perform

an orbit calculation on this large set. This is extremely impractical.

Our method approaches the problem in the opposite direction: instead of being a

deductive algorithm (finding the representatives from the domain), it is a generative

algorithm (we create the representatives and nothing else). In general this is a form of

combinatorial generation. One of the earliest approaches to this sort of problem can

be found in a paper of R. C. Read [46].

The guiding principle is that finding orbits of a small set is reasonably cheap, and

that partitioning a large set into smaller ones and performing orbit calculations only on

the smaller domains is cheaper than orbit calculation for the entire set. For instance,

we will consider finding the orbits of elements in the master degeneracy set a “cheap”

calculation. Knowing these orbits instantly gives us representatives of degeneracy sets

of size one. In general, to find the sets of size two, we just need to consider combinations

of two elements from the same orbit, or two elements from different orbits. This extends

to degeneracy sets of any size if we choose our representatives properly.

The major complicating factor is that a given constraint (“two elements from orbit

one, one element from orbit two, . . . ”) can have multiple solutions that are actually in

different orbits under the induced action of H. For example, let Eτ = {1, 2, 3, 4}, and

suppose H is a group of order 4 acting on the elements of Eτ such that there is only one

orbit of elements. We want to consider the orbits of subsets under the induced action.

If H is the cyclic group of order 4 generated by (1, 2, 3, 4), then we get the following
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representative subsets:

Size one: {1}

Size two: {1, 2} and {1, 3}

Size three: {1, 2, 3}

with the obvious representatives of size zero and four (the empty set and the set Eτ ,

respectively). However, if H was the Klein four-group generated by (12)(34) and

(13)(24), then we get the following representative subsets:

Size one: {1}

Size two: {1, 2}, {1, 3} and {1, 4}

Size three: {1, 2, 3}

again with the obvious representatives of size zero and four. Notice that the representa-

tives of size one are the same, but in the sets of size two, there are more representatives

in the latter example.

This difference can be viewed as a “failure of multiple transitivity”. If H acting on

Eτ was |Eτ |-transitive, then we could easily generate the representative subsets of a

given size by considering all constraints of the form “ci elements from orbit i”, as there

would be only one representative subset per constraint. Unfortunately our groups H

are rarely like this, so we need to efficiently account for this difference. The method we

use resembles a stabilizer chain algorithm.

A set of constraints of choosing elements from orbits of Eτ will be called a

configuration. The size of a configuration is the size of the set that satisfies the

constraints. So a configuration “two elements from orbit one, and one from orbit

two” has size three. If we order and index the orbits of Eτ , a configuration is a tuple

c = (c1, . . . , ct) where ci is a non-negative integer indicating we take that many elements



6.1. GENERATING REPRESENTATIVE DEGENERACY SETS 84

from orbit i. The size of a configuration c is thus

|c| =
∑

ci.

Our algorithm will first require us to generate all configurations, and then for each

configuration, determine the representative sets of that configuration. The first point

to note is that a configuration c of size n defines a dual configuration c′ of size |Eτ |−n.

In other words, any representative S of configuration c provides the complement Eτ\S,

which can also be taken as a representative. Therefore we need only consider the

configurations of size N = 1, . . . ,
⌈

1
2 |Eτ |

⌉
and for each representative calculated, we

add in its complement. This is a significant reduction of work. The representatives

from configurations of sizes 0 and 1 (and thus, |Eτ | and |Eτ | − 1) are already known:

the empty set is the only representative of size 0, and the representatives from the

orbits on Eτ (which we have already calculated) are the representatives of size 1. This

further reduction is minor but helpful nonetheless.

Suppose Eτ has t orbits under the action of H, and denote the orbits as ω1, . . . , ωt.

A configuration will therefore be a t-tuple of nonnegative integers (c1, . . . , ct) such that

ci ≤ |ωt| for all 1 ≤ i ≤ t. That is, the highest number of distinct elements you can take

from an orbit is the number of elements in that orbit. One way to view a configuration

of size n is as a unordered tuple of choices from {1, . . . , t} where i can be repeated at

most |ωi| times. In GAP we can find the set of configurations of size n by the function

UnorderedTuples([1..t], n) and filtering appropriately.

Now we need to compute the representative sets for a given configuration. We will

use a recursive algorithm. Let Reps(c,G) be a function with c a configuration and G a

finite (permutation) group acting on the set Eτ = {1, . . . , |Eτ |} (since we interpret Eτ

via the permutation representation.) We will assume the function has access to Ω, the

set of orbits of Eτ under H. The function Reps(c,G) outputs a set of representative

sets of configuration c under the action of G. We begin our recursion by setting G = H.

Reps(c,G) begins by finding the first nonzero entry ci of c. If the configuration
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has no nonzero entry, then Reps(c,G) returns the empty set. Otherwise, the function

generates all subsets of ωi of size ci, and calculates the orbits of these subsets under

the induced action of G. From these orbits, it chooses a representative for each, and

the set of all such representatives is stored as R. Form a new configuration c′ which

is c with ci zeroed. Then for each element r of R find the stabilizer G0(r) of the set r

under the action of G and call Reps(c′, G0(r)). The result of this will be a set of subsets

of Eτ . For each such subset we append r. Once this is completed for all r in R, return

the collection of sets created by this procedure.

This algorithm is essentially a depth-first traversal of a tree, where a path in the

tree corresponds to a unique representative degeneracy of a given configuration. Each

level in the tree corresponds to choices of elements from a specific orbit of Eτ (so that

the tree has depth at most t, the number of orbits). Note that nodes at depth i do not

necessarily correspond to elements in the ith orbit, because we skip over any orbits that

do not feature in the configuration. We partition the orbit ωi of Eτ under the action

of the stabilizer of the level above for two reasons: we need to determine the orbits

under a group to account for the difference mentioned in the previous example; and

this group is the stabilizer of the level above so as to not interfere with the partition

of the upper levels.

As an example, say there are 3 orbits of Eτ : ω1, ω2, and ω3. Suppose we have

configuration (2, 2, 1). We first choose two elements from ω1. The options available to

us are representatives from the orbits of 2-tuples of elements from ω1 under the action

of H. This is because the action of H on these elements must keep them in the same

orbit, so they will forever be a 2-tuple of elements from ω1 under the action of H. So if

we select one of these 2-tuples, say X1, we want to preserve this choice. Therefore our

choices for elements in ω2 must be under the action of the stabilizer G0(1) of X1. So

we compute the orbits of 2-tuples of elements from ω2 and select a candidate X2, and

compute its stabilizer G0(2) in G0(1). This stabilizer (by construction) preserves the

choice of both X1 and X2 (that is, they are both setwise-stable under the action of this

group). Then we compute the orbits of ω3 under the action of G0(2). The complete list
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of choices we could have made corresponds to the complete list of orbits of degeneracy

sets of this configuration under the action of H.

6.1.1 Utility and efficiency

One of the useful side-effects of this algorithm is that we can easily find the size of the

orbit of any representative degeneracy set. When we choose the set of representatives

from an orbit ωi, we have to compute the orbits. If we know this information for each

node in the tree, then the size of an orbit of a degeneracy set (which is represented by

a path in the tree) is the product of the size of orbits associated to each node. Another

way of viewing it is that we store the number of options we had for a representative at

each node. The product of number of options is the total number of options we had for

a representative degeneracy set, that is, the size of the orbit we have chosen it from.

The size of the orbit of a degeneracy set will be used later in our inclusion-exclusion

algorithm.

The main point of efficiency in this algorithm is that we never have to store all

of the subsets of Eτ at any one stage in the calculations. We only have to store the

representative degeneracy sets themselves, as well as associated, useful information.

We still need to do orbit calculations on sets of subsets, but these domains are quite

restrictive (they restrict to subsets of elements of a fixed size, coming from a set that

is smaller than Eτ ).

On a 3.2 GHz machine with 1 GB of memory running Windows XP, the algorithm

can find the representative degeneracy sets for the first type in GL(3, 3; p), of which

there are about half a million representing 224 ≈ 16 million sets, in under 15 minutes

(including time for storage and other auxiliary functions). The näıve approach could

take over a week on the same machine (although the memory requirements for such a

thing would force frequent swapping to the disk).

This approach is easily suited to a parallel computing environment where at the

very least the work could be distributed as different configurations for degeneracy sets

as the calculations are independent. With a little more work, the workload could be
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divided amongst processes, each operating on a node in a tree belonging to a particular

configuration.

In practice there doesn’t seem much need to worry about parallelizing or optimizing

the representative degeneracy sets algorithm. The calculations in this algorithm may

take a not-insignificant amount of time, but the time taken is of a much smaller

magnitude than later calculations, especially inclusion-exclusion. Nevertheless,

parallelizing by configurations can be fruitful.

6.2 Inclusion-Exclusion procedure

To compute the number of choices d(S) for a given degeneracy set S, we require an

inclusion-exclusion calculation where the terms are precomputed PORC functions c(S).

Symbolically this is just

d(S) =
∑

S⊆T

(−1)|T−S|c(T ), (6.1)

where T is a subset of the master degeneracy set Eτ that also contains S. The main

difficulty here is that there are many such sets. The worst case scenario is when S is

the empty set — in this case, if the master degeneracy set has size N , then there are

2N subsets to consider.

A direct approach would be to create the Boolean lattice of sets and calculate

inclusion-exclusion by traversing this lattice. This approach has three main problems:

1. Determining the sets involved in a part of our Boolean lattice is expensive;

2. There are, at worst, 2N PORC functions required to be retrieved from storage

and held in memory;

3. There are, at worst, 2N additions of PORC functions.

Of course, there are cases when there are simple solutions to these problems, say in the

case that S is the empty set or the whole set Eτ . However we need an efficient solution

for all sets.
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The main failing of the direct approach is that it does not recognize and utilize the

high amount of redundancy in the PORC functions c(S). Equivalent degeneracy sets

have equal PORC functions. Compressing these equivalent degeneracy sets into a single

vertex reduces the lattice we need to work with. The lattice itself is more complicated

as it is not as uniform, but this reduces the number of vertices we need to look at for

each inclusion-exclusion calculation. With this reduction we can rewrite (6.1) as

d(S) =
∑

T

(−1)|T−S|NS(T ) · c(T ),

where T ranges over the set of representative degeneracy sets, NS(T ) is the number of

sets equivalent to T under the action of H that also contain S, and as before c(T ) is

the PORC function associated to a degeneracy set T .

This approach allows us to lessen the penalty of problems 2 and 3 since we only deal

with the representative degeneracy sets. We already have a list of these representatives

(as well as their respective sizes) so problem 1 is mostly contained in calculating NS(T ).

To calculate NS(T ) we will use three small results ([27] pg 142–143).

Lemma 6.1. Let H be a finite automorphism group of a finite Boolean lattice (L,⊆).

Then the following results hold:

1. If sets a and b are in the same orbit under H, then a 6⊂ b and b 6⊂ a;

2. For any orbit of sets ω and a fixed set a ∈ L, then

|{b ∈ ω | a ⊆ b}|

is dependent only on the orbit to which a belongs, not a itself.

3. For any sets a, b ∈ L,

|H(a)| · |{c ∈ H(b) | a ⊂ c}| = |H(b)| · |{d ∈ H(a) | d ⊂ b}| (6.2)

where H(x) is the orbit of x ∈ L under the action of H.
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In short, NS(T ) does not depend on which representatives we have chosen for our

lattice reduction. Equation (6.2) in the previous lemma allows us to simplify how we

calculate NS(T ). By our construction of representative degeneracy sets, we already

know |H(S)| and |H(T )|. If |H(T )| < |H(S)| then we can just find the orbit of T and

count how many elements in that orbit contain S. Alternatively, if |H(S)| < |H(T )|
then we can use Equation (6.2):

NS(T ) =
|H(T )|
|H(S)| |{S

′ ∈ H(S) | S′ ⊂ T}|.

Either way, we always compute the smallest orbit and count inclusion over the smallest

possible values. This approach also allows us to use any results that can give

|{T ′ ∈ H(T ) | S ⊂ T}| or |{S′ ∈ H(S) | S′ ⊂ T}|

without computing the sets explicitly. At the moment no method is known to do this

implicit calculation so we just use IsSubset to determine inclusion. This is admittedly

expensive. If we stored the configuration of a representative degeneracy set we can

short-circuit this calculation if the configuration of T did not contain the configuration

of S. In this case NS(T ) = 0. However this is yet another IsSubset calculation that is

not helpful in the case that the configuration of S is contained in the configuration of

T .

Precomputing NS(T ) is not worthwhile as the value is used only once for each pair

S and T . Precomputing the orbits of T is also not worthwhile as it requires us to store

2|Eτ | sets which we tried to avoid in the first place. There is a possibility that NS(T )

could be deduced from information gleaned in the construction of the representative

degeneracy sets. As yet a method has not been found.

One of the remaining problems in calculating d(S) is that computing the sum

d(S) =
∑

T

(−1)|T−S|NS(T ) · c(T ),
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is expensive if done explicitly. Although multiplying a PORC function by an integer

is cheap, adding PORC functions is not. A further reduction was suggested by Mike

Newman: equivalent degeneracy sets have equal PORC functions, but furthermore two

nonequivalent representative degeneracy sets may have the same PORC function. This

arises because there are few “options” available when computing c(S). The degrees of

parameters in a type limits the cyclotomic polynomials that can appear in c(S), as well

as their multiplicity. Though the exact number of options for torsion parts of c(S) are

unknown, there are typically few. The number of unique functions c(S) (even when

roughly estimated) are far fewer than the number of representative degeneracy sets.

Therefore if we calculate the correspondence between the representative degeneracy

sets and which unique PORC function c(S) it has, then we can simplify our summation

significantly. This is done by storing a vector v of length equal to the number of

unique PORC functions c(S). Once we compute (−1)|T−S|NS(T ) then we add this to

the appropriate component of v as a “frequency”. We can store the correspondence

between representative degeneracy sets and their unique PORC function via a lookup

hash table. Obviously we do not store the PORC function itself, but a reference to a

canonical list of unique PORC functions. The correspondence can be computed cheaply

whilst calculating the functions c(S).

Therefore when calculating

d(S) =
∑

T

(−1)|T−S|NS(T ) · c(T ),

we need only do integer additions to store the “frequency” of the unique PORC function

c(T ). To complete the sum we only need multiply each unique PORC function by its

frequency and add those PORC functions together. This list is small, so the total

calculation is much cheaper than adding many PORC functions together1. Another

benefit of this method is that we only need to store a small number of PORC functions,

which is easily done in memory. Storing the explicit lists of c(S) is very expensive
1One of the major complications with adding many PORC functions together is creating and

destroying large numbers of lists which slows down garbage collection, particularly in GAP.
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memory-wise, and is very slow to read off a hard-disk. Therefore we save on memory

access time and space.

The most expensive procedure in calculating d(S) is the explicit orbit calculations

inside NS(T ). This is exacerbated by having to calculate inclusion-exclusion on a large

number of candidates. This large number is unavoidable, even with the reductions.

However the reductions outlined here allow the procedure to be computable in a prac-

tical sense.

There is one final, smaller optimizations we can employ. Firstly, when calculating

NS(T ), we end up looping over all T of a given size. The sum of NS(T ) over all T of a

given size n is
∑

|T |=n

NS(T ) =
(|Eτ | − |S|

n− |S|
)

.

If we keep track of this sum, we can possibly break the loop early once the sum reaches

the maximum value. This can avoid calculating parts that do not contribute to the

answer. Of course this is not always avoidable (say if all the representative sets that

have H-equivalent sets containing S are at the end of the queue), but this is a cheap

optimization to include.

6.3 Other aspects of implementation

This section details some of the smaller aspects regarding implementation.

6.3.1 Representation of data

The whole algorithm has several main sources of data: the types, the master predegen-

eracy set, the master degeneracy set, representative degeneracy sets, and the PORC

functions c(S) and d(S). Primarily these are sets of objects which are most often rep-

resented by sets or lists. In GAP, lists are considered to be arrays of objects (that

do not have to be of the same data type) that are not sorted and allow duplicates.

A set in GAP terminology is a sorted list with no duplicates. As such, sets are more

computationally expensive. In the current implementation of the main algorithm, most
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data that could either be a list or a set is implemented as a list.

Types are mathematically considered to be lists of type-parameters given as triples

(d,Λ, l), where d and l are positive integers, and Λ is a partition. We have implemented

types as lists of records. A record is a data object with named components. So a triple

(d,Λ, l) is represented in GAP by a list of objects

rec( degree := d, partition := Λ, location := l)

The partition Λ is given just as a list of positive integers. We acquire the partitions via

the Partitions function which orders the elements in a partition (in descending order),

but we do not rely on this and treat the partition just as a list of positive integers.

Predegeneracy and degeneracy sets are represented by sets of tuples, as described in

Chapter 4. The polynomials ui involved in the elements of degeneracy sets are stored

as lists of coefficients rather than polynomials.

A representative degeneracy set is a subset of the master degeneracy set that

represents several others via the group action of H. We do not store the entire coset,

just the representative. In explicit form, a degeneracy set is a list of elements, each

of these elements representing a list (u1, . . . , uw). However, this makes a degeneracy

set a list of lists of lists of integers. Since the master degeneracy set Eτ is fixed for

a type, and is indexed, we can store a degeneracy set as a set of integer indices from

{1, . . . , |Eτ |}. This is a much more compact representation, especially since the indices

do not get very large. One can use an even more compact representation via a Blist

which is essentially a bit-list of length |Eτ | where the ith bit is 1 if the ith element of

Eτ is in the degeneracy set, and zero otherwise. We do not use this as the previous

representation is easier to use in permutation actions. GAP does not have extensive

native support for bitlists (they are actually lists whose elements are true or false). A

degeneracy set can be swapped to either of the two forms quite easily if need be. Blists

are quite efficient for determining whether a set is a subset of another and so can be

utilized in the inclusion-exclusion calculations.
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As mentioned in Section 1.1 on page 5, a PORC function is a sum of terms of the

form

a(p)b(p)

where a(p) is a product of functions of the form gcd(k, f(p)) (with k a positive integer

and f(p) a polynomial in p with integer coefficients) and b(p) is a polynomial in p with

integer coefficients. We represent the polynomials (in both parts) as lists of coefficients,

and gcds as pairs (k, f(p)) since they do not have to be functionally gcds. The lists are

kept unique by combining the polynomials whenever the a(p) parts match. The zero

PORC function is represented as an empty list.

For the most part we only need to add PORC functions and multiply a PORC

function by a rational number. To add PORC functions we determine the a(p) parts

involved and for each unique a(p) we add the polynomials b(p) that had a corresponding

part a(p). Adding the polynomials is just component-wise list addition (where a list of

coefficients for a smaller-degree polynomial is enlarged to meet the length of the larger-

degree polynomial). The slow part of this process is determining the unique a(p) parts.

Multiplying PORC functions by a rational number r simply involves multiplying each

list corresponding to b(p) parts by r (with the appropriate modifications for multiplying

by zero).

Only in the final stages of calculating a type do we need to multiply and divide

PORC functions by a polynomial. For the former we use special vector arithmetic to

emulate multiplying the b(p) parts by a polynomial (we multiply all such parts as their

collection implies a summation of terms a(p)b(p)). For the latter we need to convert

the coefficient lists to polynomials and do the explicit division. The resulting function

will always be a PORC function, even in our restricted sense (that is, our divisor will

always evenly divide the polynomials b(p)).



Chapter 7

Results

The algorithm discussed in this thesis has been implemented in GAP 4.4.7. It has

successfully calculated the first few values of g(r, s; p) and f2(n; p):

(r, s) g(r, s; p)

(1, 1) 1

(2, 1) 3

(2, 2) 3

(3, 1) 4

(3, 2) p + 14

(4, 1) 6

n f2(n; p)

1 1

2 2

3 4

4 8

5 p + 22

These results can be found in a reasonable amount of time. The (3, 2) and (4, 1)

cases take approximately 25 minutes each on a 3.2 GHz machine with 1 gigabyte of

RAM running GAP 4.4.7 on Windows XP. Results for larger values of r and s take

more time. The case (3, 3) takes several weeks of CPU time, most of which is spent in

calculating inclusion-exclusion.

This exponential increase in time is an unfortunate side-effect of finding an answer

in the form of a PORC function. The problem suffers from an inherent combinatorial

explosion of data, even with major algorithmic improvements to tame this. In general,

the algorithm could run in a reasonable time if it weren’t for inclusion-exclusion. For

example, the data in (3, 3) case (not including inclusion-exclusion) can be computed

94
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for all 64 types in under half an hour with the machine described above. The inclusion-

exclusion calculation takes weeks.

The bottleneck in the inclusion-exclusion calculation is determining the number of

degeneracy sets in the orbit of a given set T that contain another degeneracy set S. If

this calculation could be sped up by a factor of K then the entire inclusion-exclusion

calculation would be sped up equivalently. Preferably such a calculation would not find

the orbit of T and detect whether a set contained S (as both processes are expensive).

It is known that the answer we should get out is only dependent on the orbit of T , not

on T itself. It stands to reason that structural information of the action of H on T and

S should give us the answer we need. At present, such a method has not been found.

A method has been proposed that allows us to try to get explicit PORC answers

in a short amount of time without computing inclusion-exclusion. This is the hybrid

method which we will discuss next.

7.1 Hybrid method

Inclusion-exclusion is a prohibitively expensive calculation. It gives us exact, functional

results, but at the cost of a exponential increase in calculation time. Given that all the

other parts of the main algorithm are reasonably fast, we would like to use them to

find g(r, s; p) without calculating inclusion-exclusion.

This approach is called the hybrid method as it takes the functional answers gained

from the main algorithm of this thesis (without inclusion-exclusion), finds the degree

of the polynomial part of g(r, s; p) and then uses O’Brien’s ClassTwo function to inter-

polate g(r, s; p) and thus determine it. Note that the degree of g(r, s; p) is at most the

degree of h(r, s; p). Thus we need a degree estimate on the following equation:

h(r, s; p) =
1

|GL(r, s; p)|
∑

τ

∑

S⊆E

|cτ | · d(S) · pfS

|H0(S)| .

The PORC function d(S) is the sum of PORC functions c(T ) via inclusion-exclusion.

The degree of |GL(r, s; p)| is r2 + s2, so the degree of g(r, s; p) will be the degree of the
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sum minus this value (as |GL(r, s; p)| divides the sum evenly).

Therefore we need to find the degree of the sum. The degree will be the maximum

degree over all types τ . Each type is a term

∑

S⊆Eτ

|cτ | · d(S) · pfS

|H0(S)| .

The polynomial |cτ | (the number of elements of any conjugacy class of type τ) is fixed

for a type. We can easily calculate |cτ |, and thus its degree. Therefore we want to find

max
S⊆Eτ

{
deg

(
d(S) · pfS/|H0|

)}

which is equal to

max
S⊆Eτ

{deg(d(S)) + fS}.

We can quickly find the value of fS for all degeneracy sets S, so all we need to do is

find the degree of d(S) without calculating it explicitly.

If we actually calculated inclusion-exclusion, d(S) would be an integer linear

combination of the PORC functions c(T ) for T ⊇ S. Consider the following lemma:

Lemma 7.1. Let S be a degeneracy set, and T a subset of S. Then the polynomial

part of c(S) divides the polynomial part of c(T ).

Sketch of proof. The degeneracy set S is the degeneracy set T , with added constraints.

Therefore the number of choices of elements restricted by the equations from S is at

most as many as there are for T .

More specifically, the associated matrix used to compute c(S) has rank at least

as large as the rank of the associated matrix used to compute c(T ). Therefore the

associated nullity for c(S) must be at most the nullity for c(T ) and thus c(S) must

divide c(T ).

Since all terms have degree at most the degree of c(S), this is an upper bound on the

degree of d(S). In other words, the number of choices of finite field elements satisfying
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equations in S and certain inequalities can be estimated by ignoring the inequalities.

Unfortunately this gives too much weight to some sets S where the degree of c(S) and

the number of fixed points is high, but d(S) is actually zero. This occurs when the

equalities in S contradict the inequalities that also need to hold. We have a process to

deal with these exceptions.

Lemma 7.2. For a given degeneracy set S of equations, and a set T of inequalities,

we can determine whether these conditions can hold simultaneously, that is, whether

the system of equations and inequalities are consistent.

Proof. Our equations and inequalities involve type-parameters β1, . . . , βw and their

Galois-conjugates. As before, an equation

βu1
1 · · ·βuw

w = 1

can be written additively as a vector (u1, . . . , uw). If we replace the polynomials ui by

vectors of length given by the degree of the corresponding type-parameter βi, then we

have an equivalent vector (v1, . . . , vk′) representing this equation.

The set of all equations formed by S is a Z[σ]-module. Suppose it has rank r as a

Z-module. If the equations S and inequalities T were consistent, then if t is a vector

in T , then t cannot be contained in the span of the equations from S. That is, if an

equation is derivable from S then it must hold as an equality. But if t is in the span of

the equations from S then it is derivable from the equations.

Therefore for each equation in T , we need a process to show that the vector cor-

responding to this equation is not contained in the Z-module derived from S. Let the

vectors obtained from S be the rows of a matrix U . Compute the Sigma-closed Hermite

Normal Form (σHNF) of U and store it in a matrix U ′. The number of rows of U ′

is the rank of the associated Z-module. Now if we append to U ′ a vector t from the

inequalities in T , and compute the σHNF of the enlarged matrix. If t is in the span of

the rows of U , then the rank will be r and the set of equations and inequalities will be

inconsistent. Otherwise if the rank is r + 1 for every vector t in T , then the system of
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equations and inequalities will be consistent.

This now allows us to find a reasonable estimate for the degree of d(S). Interestingly,

this estimate is actually an exact answer:

Theorem 7.3. The hybrid algorithm gives the exact degree of g(r, s; p).

Proof. The hybrid algorithm computes the precise values for the size of a conjugacy

class of a type, and the number of fixed points for an element of a conjugacy class of

given degeneracy. The only estimated parameter is the degree of d(S). The degree of

d(S) is estimated as the degree of c(S).

Recall that

d(S) =
∑

S⊆T

(−1)|T−S|c(T ).

By Lemma 7.1, the degree of each term in this sum is at most the degree of c(S).

Therefore if we estimate the degree of d(S) by c(S), we never under-estimate the degree.

Since this holds for all degeneracy sets of a type, we never underestimate the maximum

degree in a type, and since this holds for all types, we never underestimate the degree

of g(r, s; p).

For a given type, let N be the maximum degree of c(S) over all consistent repre-

sentative degeneracy sets S that would have inclusion-exclusion calculated for it. Let

S′ be a largest such degeneracy set such that the degree of c(S′) is N . Since it has

the largest possible cardinality for a set with this degree, it follows that for any subset

T of S′, the degree of c(T ) is strictly less than the degree of S′. Therefore the degree

of d(S′) must be N . Since we are assured of a set S′ whose d(S′) is of degree N in

this type, and the d(S) are always positive (and so cannot cancel the leading terms

of one another), the maximum degree in this type must be N . Therefore the hybrid

algorithm never overestimates the degree in a given type, and so never overestimates

the degree of h(r, s; p). Therefore the hybrid algorithm must calculate the degree of

h(r, s; p) exactly.

The filtering process that determines whether a set S is consistent or not is not too
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expensive. Without it the estimates given are too high (they are roughly as bad as the

degree estimates in Higman [20]), and so it is worthwhile to take the performance hit

for a much more accurate answer.

Having found the degree of g(r, s; p) we need to interpolate it to get the exact PORC

function. Here we need to consider that g(r, s; p) is not just polynomial, but PORC.

From the c(S) data we can determine which periodic parts could possibly show up in

g(r, s; p). In practice there seems to be very few options for periodic parts. Using this,

we can determine which residue classes we need perform interpolation for. For example,

if our only periodic part (other than the trivial one) is gcd(3, p− 1) and the degree of

g(r, s; p) is D, then we will need at most D + 1 primes for each residue class modulo

3. For each such prime we calculate the appropriate ClassTwo value. By Lagrange’s

interpolation theorem we can find the unique polynomial through these points, and

thus obtain g(r, s; p).

A limiting factor in the hybrid algorithm is that the ClassTwo function has running

time roughly exponential in the size of its inputs. If the primes we provide it in the

interpolation step are too large, the calculation may take some time. In most cases,

however, this will be much less than the time it would take to compute inclusion-

exclusion. Inclusion-exclusion will give you an exact, functional answer with easily

extractable (and checkable) terms for a severe cost in computation time. The hybrid

algorithm is much faster yet still precise, but does not allow for the fine-scale book-

keeping.

7.2 Verification of results

In this section we present a variety of checks to ensure that the data we calculate is

correct. Some of them are simple checks to make sure the calculations are not obviously

wrong, while other provide a much stronger standard of correctness. The checks also

provide heuristics that may be useful in determining performance, expected calculation

times, and bounds for the hybrid method.
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7.2.1 The group H

The group H is defined simply as the group of permutations of type-parameters, keeping

degree, partition and location invariant. The order of H is typically small and so H

can be inspected by eye. We can algorithmically check that the order of H is correct.

Suppose we have type-parameters y1, . . . , yw with yi = (di, λi, li). Let k(d, λ, l) be the

number of type-parameters that have degree d, partition λ, and location l (exactly).

Then

|H| =
∏

(d,λ,l)∈τ

k(d, λ, l)! · d,

for all applicable triples (d, λ, l).

Another concern is the action of H on degeneracy sets, and more specifically, on

elements of such sets. The action of H on elements of degeneracy sets is given as a

matrix multiplication on a vector. Due to the symmetry in our particular representation

Γ, the image of the set of degeneracy sets under the action of H must be exactly Eτ .

7.2.2 Predegeneracy sets

The master predegeneracy set describes the Jordan canonical form of a matrix under

the representation Γ(s) for Chapter 2. The size of a Jordan block corresponding to a

predegeneracy element is the data we computed in Chapter 4. So if T is the master

predegeneracy set, and µ(t) for t ∈ T is the size of the block corresponding to t then

∑

t∈T

µ(t) =
1
2
r(r + 1)s, (7.1)

where Γ is the representation of GL(r;Fp) ⊕ GL(s;Fp) induced by the action on sub-

spaces of V ⊕ V ∧ V of codimension s, where V = (Fp)r. This is a simple check

that equates to the matrix representation being of the correct size. The dimension of

V ⊕V ∧V is 1
2r(r+1)s so a matrix acting naturally on it must have the same dimension.
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7.2.3 Base type inequalities

In our setup, we never use base type equalities for our degeneracy sets, but we do use

the base type inequalities. Following the notation in Section 7.2.1, the set I of base

type inequalities satisfies the following equation:

|I| =
∑

(d,Λ,l)

(
k(d, Λ, l)

2

)
· d.

7.2.4 Master degeneracy set

Since the master degeneracy set Eτ is a simple translation from the master predegen-

eracy set T , Equation (7.1) in Section 7.2.2 holds for Eτ as well. As a degeneracy set

(in a broader sense) can contain elements from the base type inequalities I and those

from Eτ , the set of all degeneracy sets is of size 2N where

N =
1
2
r(r + 1)s +

∑

(d,Λ,l)

(
k(d, Λ, l)

2

)
· d,

with the notation as specified in previous subsections.

7.2.5 Representative degeneracy sets

One of the main bases of our algorithm is to construct degeneracy sets that will represent

all degeneracy sets. If we assume that the function to compute orbits of elements is

trustworthy, then we have a few straightforward checks we can employ.

Whilst finding the representative degeneracy sets, we store the size of the orbit for

each representative. If we keep a running total of these, then they should be equal to the

total number of degeneracy sets. If our total differs, then this indicates redundant or

omitted sets. These totals can also be broken down by size of the degeneracy set, so we

have a finer grain of verification. That is, the total number of represented degeneracy

sets of size i should be
(|Eτ |

i

)
. If any one of these differs, we know where to look.

For a given configuration, the representative degeneracy sets of that configuration

cannot be redundant as the algorithm to generate them necessarily separates subsets
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via the orbit algorithm. Specifically, for each part in a configuration we recurse based

on the distinct options given to us by the orbit calculation. By definition these options

have to be distinct (because the orbit calculation partitions the set). Furthermore,

two representative sets of different configurations cannot represent the same set. As

an example, if one configuration required two elements from orbit 1 and the other

configuration required three, then there is no way for the induced action of H on these

sets to take any set of one configuration to the other.

If we want more assurance on the validity of our representative degeneracy sets,

then we can explicitly check them. It is easy (but extremely memory-intensive) to

generate degeneracy sets from the representatives (just by invoking the Orbit command

in GAP). There are ways to reduce the memory workload, say by considering sets of

a set size, and using iterators to cycle through the sets. This method can check both

whether all sets are generated by the representatives, and whether two representatives

generate the same set. In any case, this is an expensive check but gives absolute

assurance that the representative degeneracy sets are valid.

7.2.6 The PORC functions c(S) and d(S)

In essence the PORC function c(S) counts the number of choices of elements from a

finite field with constraints given by the set S. Specifically, if we have type-parameters

y1, . . . , yw, then c(S) gives us the number of choices of vectors (β1, . . . , βw) from (Fq)w,

where q is a specified power of p based on the degrees of the type parameters, and

where the vectors satisfy equations

βu1
1 · · ·βuw

w = 1

with (u1, . . . , uw) ∈ S.

It is simple to construct the field (Fq)w for a given q. The structure of the elements

of S can be readily used to create filters, so we can filter the elements of (Fq)w according

to whether they satisfy an equation given by an element of S. The number of elements
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satisfying all such filters should be equal to the value of c(S) at p. If we check c(S) for

enough primes p, we can validate the PORC function.

This check is slow as we are filtering large sets, and have to do a lot of finite field

arithmetic. This method also runs into the problem that we may try to construct finite

fields Fq larger than the system can handle (not so much in memory requirements but

because there are internal limitations on such things). For a PORC function with gcd

parts gcd(ki, fi(p) and polynomial g(p) of degree d, we need to test at most

(∏

i

ki

)
· d

primes p. In practice we can limit the ki to distinct integers.

We can similarly check d(S) using the same filters appropriately.

7.2.7 Fixed points

From Section 7.2.2 we already have one check on our fixed point data. For a given

degeneracy set S and a fixed prime p, it is possible to explicitly construct a matrix

from the representation and a set of finite field elements chosen from Fpn in much the

same manner as the explicit check for c(S). Given this matrix we can explicitly find

the number of fixed points and compare. This is incredibly slow and should only be

used sparingly.

7.2.8 Other checks

The Cauchy-Frobenius theorem

# number of orbits =
1
|G|

∑

g∈G

χ(g)

implicitly ensures that our final answer for the total number of fixed points over all

types is divisible by the size of G. If anything were to go wrong in any one of the types,

one would expect this to be visible at the level of the Cauchy-Frobenius theorem. This

would detect if we omitted a type (since the result for any type is strictly positive) or
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overcounted our degeneracy sets or their respective number of fixed points. It is unlikely

(but still possible) that an unfortunate series of errors could conspire to produce a false

positive. In any case, this check is automatic as our PORC functions always have

polynomial parts, never strictly rational functions so our data structures will detect

this immediately.

Furthermore, if we perform our calculations but ignore the number of fixed points

for a given degeneracy of a given type, then the sum of this must equal the number of

elements in GL(r; K)⊕GL(s; K) since this is essentially an element count. That is, if

we reinterpret Theorem 2.5 we find that

|G| =
∑

τ

|cτ |
∑

S⊆Eτ

d(S), (7.2)

where |cτ | is the size of any conjugacy class of type τ (à la Theorem 3.3). Throughout

our calculations we can compute this sum and check that it indeed equals

|G| = |GL(r; K) ⊕ GL(s; K)| (for which we have a well-known formula). If the

calculations pass this check but not the divisibility by |G| then we know that the

number of fixed points for a given degeneracy set is to blame (as it is the only element

in the latter check but not the former). Combined with the previous checks, we can

readily pinpoint corrupt data.

All of the results presented at the beginning of this chapter passed the following

checks:

1. The size of the group H;

2. The size of the predegeneracy set T ;

3. The size of the master degeneracy set and the base type inequalities;

4. The numerical check that the representative degeneracy sets represented all

degeneracy sets;

5. The PORC functions c(S) and d(S), checked for the primes 2, 3, 5, and 7;
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6. The divisibility of the penultimate result by |G|;

7. All elements were accounted for (Equation (7.2)).

Explicit checks on the representative degeneracy sets and the number of fixed points

for a given degeneracy set were too expensive to perform for all data. The above checks

form a reasonably strong assertion of correctness in of themselves. The fact that the

results match those already calculated by other methods strengthens this opinion.
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di un numero primo. Ann. Mat. Pura Appl., 1898.

[5] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like struc-

tures, volume 67 of Encyclopedia of Mathematics and its Applications. Cambridge

University Press, Cambridge, 1998. Translated from the 1994 French original by

Margaret Readdy, With a foreword by Gian-Carlo Rota.

[6] P. B. Bhattacharya, S. K. Jain, and S. R. Nagpaul. Basic abstract algebra. Cam-

bridge University Press, Cambridge, second edition, 1994.

[7] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.

I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational

algebra and number theory (London, 1993).

[8] Arthur Cayley. On the theory of groups, as depending on the symbolic equation

θn = 1. Philos. Mag. (4), 7:40–47, 1854.

106



BIBLIOGRAPHY 107

[9] Henri Cohen. A course in computational algebraic number theory, volume 138 of

Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.

[10] F.N. Cole and J.W. Glover. On groups whose orders are products of three prime

factors. Amer. J. Math., 15:191–220, 1893.

[11] Gabrielle A. Dickenson. On the enumeration of certain classes of soluble groups.

Quart. J. Math. Oxford Ser. (2), 20:383–394, 1969.

[12] Leonard Eugene Dickson. Linear groups: With an exposition of the Galois field

theory. with an introduction by W. Magnus. Dover Publications Inc., New York,

1958.

[13] Marcus du Sautoy. Counting p-groups and nilpotent groups. Inst. Hautes Études

Sci. Publ. Math., (92):63–112 (2001), 2000.

[14] Marcus du Sautoy. Zeta functions of groups: the quest for order versus the flight

from ennui. In Groups St. Andrews 2001 in Oxford. Vol. I, volume 304 of London

Math. Soc. Lecture Note Ser., pages 150–189. Cambridge Univ. Press, Cambridge,

2003.

[15] Bettina Eick and E. A. O’Brien. Enumerating p-groups. J. Austral. Math. Soc.

Ser. A, 67(2):191–205, 1999. Group theory.

[16] Joseph A. Gallian and James Van Buskirk. The number of homomorphisms from

Zm into Zn. Amer. Math. Monthly, 91(3):196–197, 1984.

[17] J. A. Green. The characters of the finite general linear groups. Trans. Amer. Math.

Soc., 80:402–447, 1955.

[18] J. A. Green. Polynomial representations of GLn, volume 830 of Lecture Notes in

Mathematics. Springer-Verlag, Berlin, 1980.

[19] Marshall Hall, Jr. and James K. Senior. The groups of order 2n (n ≤ 6). The

Macmillan Co., New York, 1964.



BIBLIOGRAPHY 108

[20] Graham Higman. Enumerating p-groups. I. Inequalities. Proc. London Math. Soc.

(3), 10:24–30, 1960.

[21] Graham Higman. Enumerating p-groups. II. Problems whose solution is PORC.

Proc. London Math. Soc. (3), 10:566–582, 1960.

[22] Peter John Hilton and Urs Stammbach. A course in homological algebra. Springer-

Verlag, New York, 1971. Graduate Texts in Mathematics, Vol. 4.

[23] Otto Hölder. Die Gruppen der Ordnungen p3, pq2, pqr, p4. 43:301–412, 1893.

[24] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of computational

group theory. Discrete Mathematics and its Applications (Boca Raton). Chapman

& Hall/CRC, Boca Raton, FL, 2005.

[25] Nathan Jacobson. Lectures in abstract algebra. Vol. II. Linear algebra. D. Van

Nostrand Co., Inc., Toronto-New York-London, 1953.

[26] Rodney James. The groups of order p6 (p an odd prime). Math. Comp.,

34(150):613–637, 1980.

[27] Adalbert Kerber. Applied finite group actions, volume 19 of Algorithms and Com-

binatorics. Springer-Verlag, Berlin, second edition, 1999.

[28] Peter Lancaster and Miron Tismenetsky. The theory of matrices. Computer Science

and Applied Mathematics. Academic Press Inc., Orlando, FL, second edition, 1985.

[29] Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20 of Encyclopedia of

Mathematics and its Applications. Addison-Wesley Publishing Company Advanced

Book Program, Reading, MA, 1983. With a foreword by P. M. Cohn.

[30] Dudley E. Littlewood. The Theory of Group Characters and Matrix Representa-

tions of Groups. Oxford University Press, New York, 1940.

[31] Saunders Mac Lane. Categories for the working mathematician. Springer-Verlag,

New York, 1971. Graduate Texts in Mathematics, Vol. 5.



BIBLIOGRAPHY 109

[32] I. G. Macdonald. Symmetric functions and Hall polynomials. The Clarendon Press

Oxford University Press, New York, 1979. Oxford Mathematical Monographs.

[33] I. G. Macdonald. Numbers of conjugacy classes in some finite classical groups.

Bull. Austral. Math. Soc., 23(1):23–48, 1981.

[34] Marvin Marcus. Finite dimensional multilinear algebra. Part 1. Marcel Dekker

Inc., New York, 1973. Pure and Applied Mathematics, Vol. 23.

[35] Marvin Marcus. Finite dimensional multilinear algebra. Part II. Marcel Dekker

Inc., New York, 1975. Pure and Applied Mathematics, Vol. 23.

[36] Annabelle McIver and Peter M. Neumann. Enumerating finite groups. Quart. J.

Math. Oxford Ser. (2), 38(152):473–488, 1987.

[37] Eugen Netto. Substitutionentheorie und ihre Anwendungen auf die Algebra. Teub-

ner, Leipzig, 1882.

[38] Peter M. Neumann. An enumeration theorem for finite groups. Quart. J. Math.

Oxford Ser. (2), 20:395–401, 1969.

[39] M. F. Newman. Determination of groups of prime-power order. In Group theory

(Proc. Miniconf., Australian Nat. Univ., Canberra, 1975), pages 73–84. Lecture

Notes in Math., Vol. 573. Springer, Berlin, 1977.

[40] M. F. Newman, E. A. O’Brien, and M. R. Vaughan-Lee. Groups and nilpotent Lie

rings whose order is the sixth power of a prime. J. Algebra, 278(1):383–401, 2004.

[41] E. A. O’Brien. The p-group generation algorithm. J. Symbolic Comput., 9(5-

6):677–698, 1990. Computational group theory, Part 1.

[42] E. A. O’Brien and M. R. Vaughan-Lee. The groups with order p7 for odd prime

p. J. Algebra, 292(1):243–258, 2005.

[43] Eamonn A. O’Brien. Bibliography on the determination of finite groups. Available

at http://www.math.auckland.ac.nz/ obrien/research/bibliography.pdf.



BIBLIOGRAPHY 110

[44] L. Pyber. Enumerating finite groups of given order. Ann. of Math. (2), 137(1):203–

220, 1993.

[45] L. Pyber. Group enumeration and where it leads us. In European Congress of

Mathematics, Vol. II (Budapest, 1996), volume 169 of Progr. Math., pages 187–
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